
Aktas Djeylan

Quantum System engineering Quantum Communication

QCI workshop, Tutorial 30/06/2022

Introduction
Cryptography
Quantum Key Distribution
Commercial QKD

Quantum Secured Communications

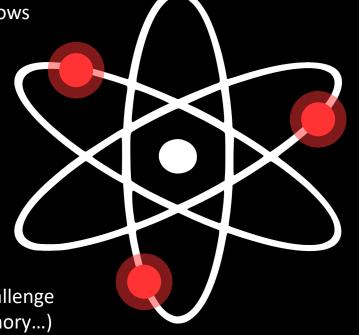
In classical communication security is based on computational assumptions. Quantum physics open the door to a new avenue of research with information-theoretic security (QKD, OT, Bit Commitment).

Quantum metrology & Sensing

At the heart of quantum metrology & sensing lies the NOON state. Quantum schemes have demonstrated the possibility to measure physical quantities with better accuracy than classical system ever could (Gas sensing, dispersion,...).

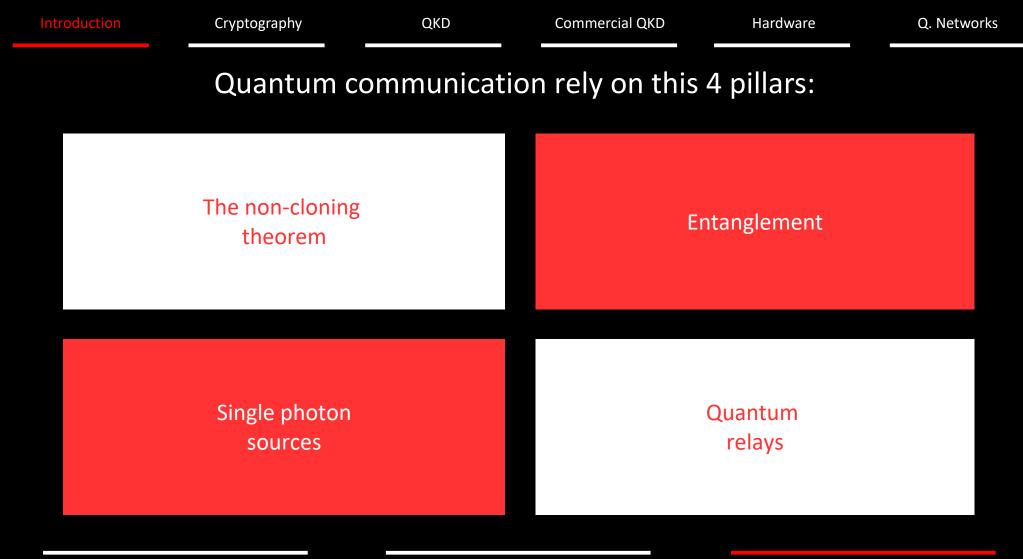
Quantum Computation

With Shor algorithm threatening the security of classical encryption, The quest for a quantum computer has been heavily pursued and is making steadily progress toward demonstrating quantum supremacy.


	Introduction	Cryptography	QKD	Commercial QKD	Hardware	Q. Networks
--	--------------	--------------	-----	----------------	----------	-------------

The Q-bit

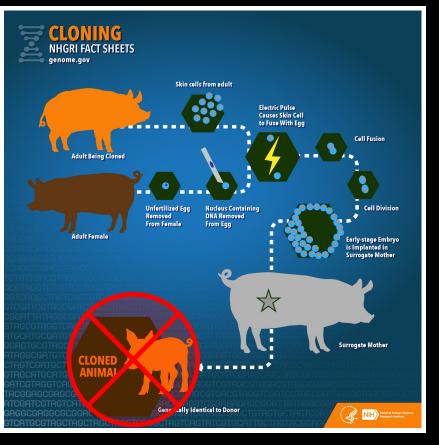
The incompatible measurements in quantum systems and the superposition principle that allows encoding qbits on different carriers (electrons, ions, atoms, photons), constitute a very powerful resource.


Coherence

Coherence are at the centre of many if not all quantum protocols and preserving this coherence is often a challenge (choice of carrier, use of quantum memory...)

Entanglement

The non-separability of a special class of state permit to produce non-local correlations that don't exist in the classical world.



Basics

Quantum advantage

Quantum resources

A brief history of the NCT

Starting point: proposal to use entanglement to communicate via the perfect copy of an unknown q-state.
 1982: NCT demonstrated by Wooter & Zurek.

• 1996: Generalization of NCT by Buzek & Hillery.

Bibliography

- V. Scarani *et al,* Rev. Mod. Phys. **77**, 1225 (2005)
- W. K. Wooters ans W. H. Zurek, Nature **299**, 802 (1982)
- V. Buzek and M. Hillery, Rev. A 54, 1884 (1996)
- "Experimental Quantum Cloning", A. Lamas-Linares *et al.* Science **296**, 712 (2002)
- "Quantum Cloning with an Optical Fiber Amplifier",
- S. Fasel et al., PRL 89, 107901 (2002)

QKD

Hardware

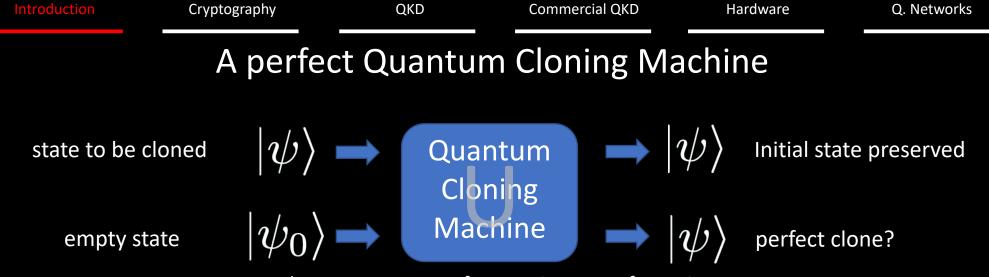
Q. Networks

A No-go theorem

Problem:

Skin cells from adult Causes Skin Cel o Fuse With Faa dult Being Cloned Nucleus Containing arly-stage Embry ally Identical to Donor Research Ins

One cannot measure the state $|\psi\rangle$ of a single system. The measurement of an observable A is one of its eigenstate, unrelated to the input state.


To reconstruct $|\psi\rangle$ one must measure the average of several observables implying a statistic over many identical systems.

One can imagine a solution that let the unknown state interact with N prepared blank reference state in order to obtain N+1 copies of the initial state:

 $||\psi
angle\otimes|\overline{R}
angle\otimes|R
angle...\otimes|\overline{R}
angle\stackrel{?}{
ightarrow}|\psi
angle\otimes|\overline{\psi
angle...|\psi
angle}$

No quantum operation exists that can duplicate perfectly an unknown quantum state.

Basics

Where operator U performs unitary transformation

How to quantify the quality of the Q-cloning machine?

We simply need to calculate the overlap of the input/output state (fidelity):

$$F = \langle \psi | \rho | \psi \rangle$$

Basics

Introduction	Cryptography	QKD	Commercial QKD	Hardware	Q. Networks
		NCT eas	sy proof		
1) The g	oal is to achieve th	ne following op	eration:		
	$\ket{\psi}$ ($\otimes \ket{\psi_0}$ -	$ ightarrow \psi angle \otimes $	$\psi angle$	
	State to be cloned $ \psi angle$ is unknow	(<i>)</i>		Perfect clone basis $\{ 0 angle, 1 angle\}$	
2) Let's a	u unitary and un U unitary and un U U	niversal $\ket{0}\otimes\ket{\psi_0}$	operator": $ ightarrow 0 angle \otimes 0$ $ ightarrow 1 angle \otimes 1$	\rangle	

Introduction	Cryptography	QKD	Commercial QKD	Hardware	Q. Networks
		NCT eas	sy proof		
3) Now	what about a Q-bit	state?			
	y	$\langle \psi \rangle = \alpha 0\rangle$	$ angle + e^{i\phi} \beta 1 angle$		
Linear	ity simply gives:				
	$U \psi angle \psi$	$\langle \psi_0 \rangle = \alpha 0\rangle$	$ angle 0 angle + e^{i \phi} eta $	1 angle 1 angle	
Instea	d of the expected:				
$U \psi angle \psi_0 angle$ -	$ ightarrow \psi angle \psi angle = lpha^2$	$ 0\rangle 0\rangle + e$	$i^{i2\phi}\beta^2 1\rangle 1\rangle+$	$e^{i\phi}lphaeta(0 angle 1$	$ \rangle + 1\rangle 0\rangle)$
	An unk	nown quan [.]	rator U cannot tum state cann	ot be	

Introduction	Cryptography	QKD	Commercial QKD	Hardware	Q. Networks
		NCT eas	sy proof		

Conclusions:

- No violation of Heisenberg's relations
- Possibility to distribute secret keys for cryptography

However, can we do something?

- Can we extract some information?
- $\circ~$ At the price of non perfect cloning?

Homework:

Can you calculate the fidelity of 2 different strategies for unperfect cloning? (Measure H/V resend H/V or send H/V randomly)

Introduction	Cryptography	QKD	Commercial QKD	Hardware	Q. Networks

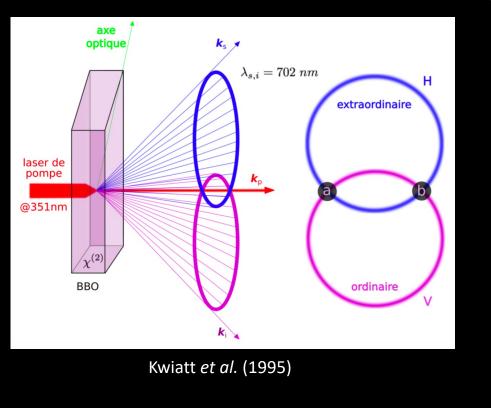
Entanglement in short

The tensor product of 2 qbits can be written: $\psi_{ab} \rangle = |\psi_a \rangle \otimes \psi_b \rangle = \alpha_a \alpha_b |0_a \rangle |0_b \rangle + \alpha_a \beta_b |0_a \rangle |1_b \rangle + \beta_a \alpha_b |1_a \rangle |0_b \rangle + \beta_a \beta_b |1_a \rangle |1_b \rangle$

There are some 2 qbits state that cannot be written as such called entangled states:

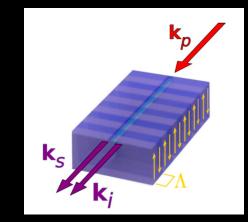
2 qbits Bell state basis

$$\begin{split} |\Psi^+\rangle &= \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle) \\ |\Psi^-\rangle &= \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle) \\ |\Phi^+\rangle &= \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \\ |\Phi^-\rangle &= \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle). \end{split}$$


Entanglement Photon Pair Source (EPPS)

First experimental realization:

Volume 49, Number 2	PHYSICAL REVIEW LETTERS	12 JULY 1982
Experimental Re	alization of Einstein-Podolsky-Rosen-Bohm <i>Gedank</i> A New Violation of Bell's Inequalities	kenexperiment:
Institut d'Optique Théoriqu	Alain Aspect, Philippe Grangier, and Gérard Roger we et Appliquée, Laboratoire associé au Centre National de la Université Paris-Sud, F-91406 Orsay, France (Received 30 December 1981)	Recherche Scientifique,
calcium has bee (i.e., optical an stein-Podolsky agreement with	plarization correlation of pairs of photons emitted in a radiative en measured. The new experimental scheme, using two-cham- nalogs of Stern-Gerlach filters), is a straightforward transpos- Rosen-Bohm <i>gedankenexperiment</i> . The present results, in each the quantum mechanical predictions, lead to the greatest viol inequalities ever achieved.	nel polarizers sition of Ein- xcellent


Introduction	Cryptography	QKD	Commercial QKD	Hardware	Q. Networks

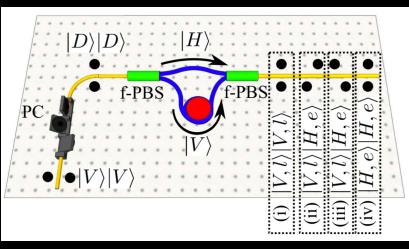
Entanglement Photon Pair Source (EPPS)

Many other experiments followed:

- Increasing brightness.
- Getting more compact.

PPLN waveguide

Hardware


Q. Networks

Entanglement Photon Pair Source (EPPS)

SPDC sources with PPLN waveguides:

Type d'interaction	type-0	type-I	type-II
Polarisation	$ V\rangle_p \rightarrow V\rangle_s V\rangle_i$	$ V\rangle_p \rightarrow H\rangle_s H\rangle_i$	$ H\rangle_p \to H\rangle_s V\rangle_i$
$\chi^{(2)}$ coeff. du LiNbO3	$d_{33} \approx 30 \mathrm{pm/V}$	$d_{31} \approx -5 \mathrm{pm/V}$	$d_{24} \approx 10 \mathrm{pm/V}$
η_{SPDC} dans	$10^{-6} - 10^{-5}$	10^{-7}	10^{-9}
$\varDelta\lambda$ à 1550 nm	$20\text{-}100\mathrm{nm}$	$20\text{-}100\mathrm{nm}$	$0.8-3\mathrm{nm}$
$\varDelta\nu$ à 1550 nm	2.5-12.5 THz	$2.5-12.5\mathrm{THz}$	$0.1\text{-}0.375\mathrm{THz}$

Transcriber from ET to Pol:

Hardware

Q. Networks

Entanglement Photon Pair Source (EPPS)

SPDC sources based on type II performances :

EPPS performances :

Référence	Matériau	η_{SPDC}	V_{net}	Coïncidences
LEE et collab. [2006] PIRO et collab. [2009] MEDIC et collab. [2010] MARTIN et collab. [2010a] KAISER et collab. [2012b]	DSF PPKTP DSF PPLN/W PPLN/W	$\begin{array}{c} 3,2\cdot 10^{-32}\\ 2,8\cdot 10^{-10}\\ \mathrm{NA}\\ 1,1\cdot 10^{-9}\\ 3,5\cdot 10^{-10} \end{array}$	$\begin{array}{c} 98,3\%\\ 98\pm1\%\\ 99\pm1\%\\ 99\pm2\%\\ 99,5\pm0,8\% \end{array}$	$ 80 s^{-1} \\ 5 s^{-1} \\ 5 s^{-1} \\ 800 s^{-1} \\ 1100 s^{-1} \\ $
STEINLECHNER et collab. [2013] JEONG et collab. [2016] Ce travail	PPKTP PPKTP PPLN/W	$\begin{array}{c} 5,4\cdot 10^{-10} \\ 4,4\cdot 10^{-11} \\ 6,0\cdot 10^{-9} \end{array}$	$99,3\pm0,3\%$ $96,8\pm0,8\%$ $99\pm1\%$	$\begin{array}{c} 11800{\rm s}^{-1} \\ 90900{\rm s}^{-1} \\ 1200{\rm s}^{-1} \end{array}$

Type II is a very narrow process so the pair rates are usually limited

Group	Generator	Obser-	Bandwidth	λ	B^*	$V_{\rm net}$
		vable	(MHz)	(nm)		
[211] Cambridge (2006)	KTP OPO	polar.	22	795	0.7	77%
[58] Geneva (2008)	PPLN/W	$\operatorname{time-bin}$	1200	1560	446	NA^{\times}
[212] Hefei (2008)	PPKTP OPO	polar.	9.6	780	6	97%
[52] Barcelona (2009)	PPKTP	polar.	22	854	3	98%
[213] Geneva (2009)	PPLN/W OPO	$\operatorname{time-bin}$	117	1560	17	94%
[246] Hong Kong	Rb atoms	polar.	6	780	0.5	90%
This thesis, 540 MHz	PPLN/W	polar.	540	1560	306	99%
This thesis, $25 \mathrm{MHz}$	PPLN/W	polar.	25	1560	380	99%

Brightness is defined as the number of photon pairs /s /mW /MHz

Entanglement Photon Pair Source (EPPS)

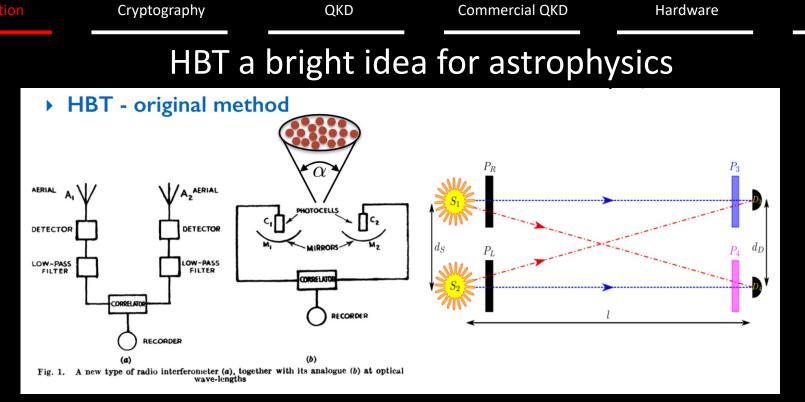

EPPS based on $\chi^{(3)}$ performances:

	Table S1. T	ypical bi/mu	lti-photon qu	antum sourc	es on variou	s <u>x(</u> 3) platfo	rms	
Materials1 ¹	Si	Si	Si	Si	Si	Hydex	Hydex	Si_3N_4
Structures	Nanowire ²	Nanowire (This work)	Nanowire (This work)	Ring ³	PhC ⁴	Ring ⁵	Ring ⁵	Ring ⁶
Number of photons	2	2	4	2	2	2	4	2
Nonlinear coefficient (W ⁻¹ m ⁻¹)	300	285	285	—	5900	0.227	0.227	-
Average pump power (mW)	1	0.12	0.6	3.3	0.6	0.6	1.5	6
Collected photon bandwidth (GHz)	18	50	50	13	12.5	0.8	0.8	0.09
Brightness (pairs s ⁻¹)	40kHz	270 kHz	340kHz	14MHz	_	302kHz	135kHz	35MHz
coincidence-to- accidental ratio	42	230	_	45	~5	_	—	_
Raw visibilities of quantum interference	_	93.0±3.2%	96.5±1.5%	89.3±2.6%	74.1±4.8%	82.4%	89%	~90%
Fidelity	0.91±0.02	0.95±0.01 (raw)	0.78±0.02	—	_	0.96 (net)	0.64	_

Introduction	Cryptography	QKD	Commercial QKD	Hardware	Q. Networks
		gle Photon	Source (SPS		
Basic oper	ration principle	–	<u>Prime features</u>		
SPS Repetition ratio of collection	te & probability	o bilit	probaP ₀ : probability ty of exactly 1 photo probability of having	n	all
Single mSingle seSingle N	ypes of "true" SPS olecules miconductor device / center in Diamond ion/atom		NV center	Q-dot	
	SPS noton pair creation in is parametric down-c		cal $\overrightarrow{k_p}, \omega_p$	$\chi^{(2)}$ idler	$\overrightarrow{k_s}, \omega_s$ $\overrightarrow{k_i}, \omega_i$

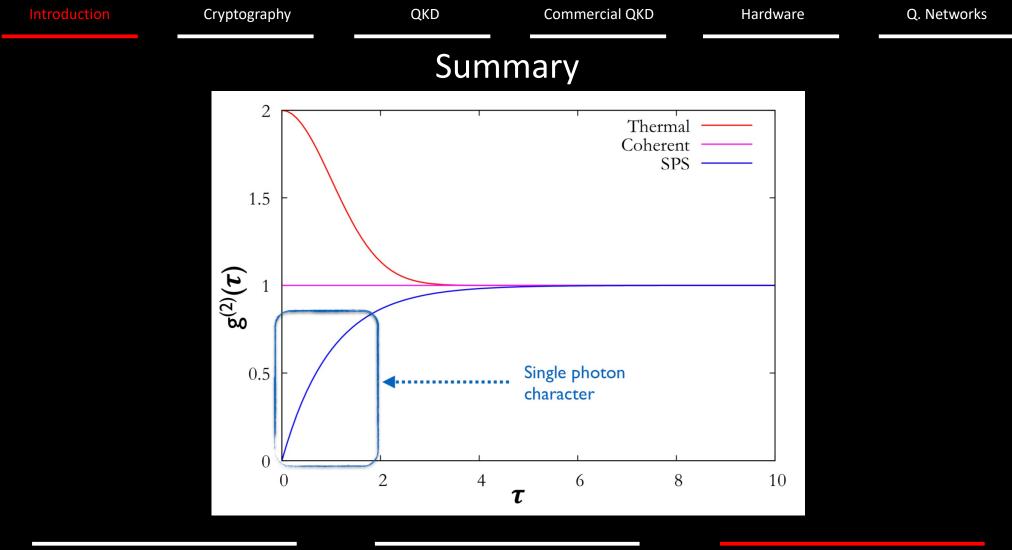
ntro			ot	io	
	u	u	LL	IU	

What for?

First measurement of the angular diameter of a star.

Interferometric-like configuration with indistinguishable paths, insensible to atmospheric fluctuations.

R. Hanbury Brown and R. Q. Twiss, Nature **177**, 27-32 (1956)


A. Martin et al., EPL 97, 10003 (2012)

Q. Networks

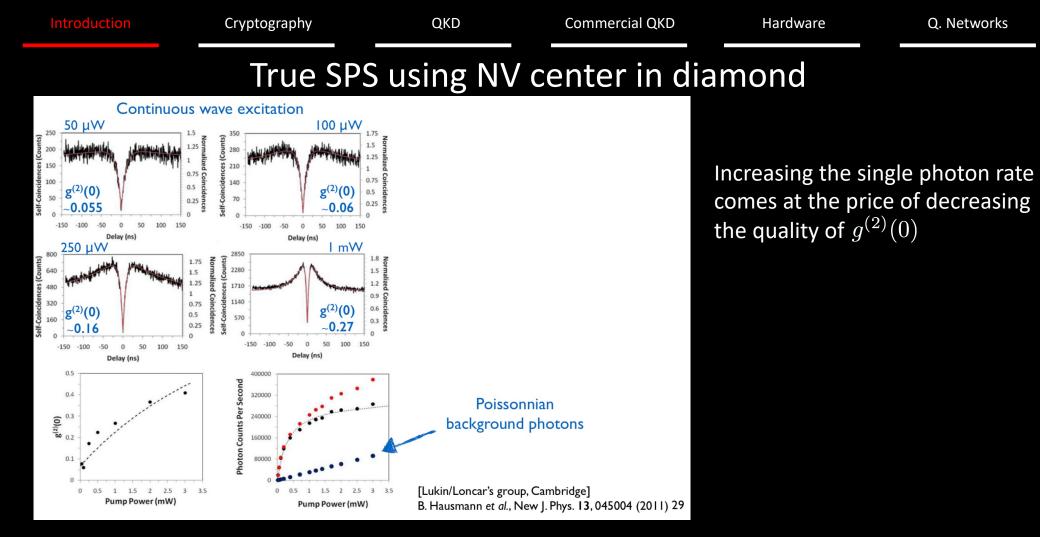
Introduction	Cryptography	QKD	Commercia		Hardware	Q. Networks
Cla	ssical descri	ption of th	e autoc	orrelati	ion functi	on
Classical intensi	ty correlation in the	time domain		Practical	examples:	
$a^{(2)}(t, t) = \langle$	$E^{\star}(t_1)E^{\star}(t_2)E(t_2).$	$E(t_1)\rangle \ (I(t_1))$	$ I(t_2)\rangle$		erent state	<u> </u>
g (ι_1, ι_2) = -	$\frac{E^{\star}(t_1)E^{\star}(t_2)E(t_2)}{\langle E(t_1) ^2 \rangle \langle E(t_2) ^2 \rangle \langle E(t_2) ^2 \langle E(t_2) ^2 \langle E(t_2) ^2 \langle E(t_2) ^2 \rangle \langle E(t_2) ^2 \langle E(t_2) ^2 \rangle \langle E(t_2) ^2 \langle E(t_2) ^2 \rangle \langle E(t_2) ^2 \langle E(t_2) ^2 \langle E(t_2) ^2 \rangle \langle E(t_2) ^2 \langle E(t_2) ^2 \langle E(t_2) ^2 \rangle \langle E(t_2) ^2 \rangle \langle E(t_2) ^2 \langle E(t_2) ^2 \rangle \langle E(t_2) ^2 \rangle \langle E(t_2) ^2 \langle E(t$	$\frac{1}{ 2\rangle ^2\rangle} = \frac{1}{\langle I(t_1)\rangle}$	$\langle I(t_2) \rangle$	P_P	$(n, \bar{n}) = 2$	$\frac{\bar{n}e^{-n}}{n!}$
with	$I(t_i) = E^{\star}(t_i)E(t_i)$	$) = E(t_i) ^2$			(0) = 1	10.
 Properties 				fo	or ${ar n}\ll 1~P_2$ =	= $P_1^2/2$
Cauchy-Schwarz ine	equality $\mapsto \langle I(t_1)I(t_1)\rangle$	$ t_2\rangle\rangle^2 \le \langle I^2(t_1)\rangle$	$\left\langle I^{2}(t_{2})\right\rangle$	 Ther 	rmal state	
Stationary regime &	$\tau = t_2 - t_1 \mapsto \langle I$	$I(t)I(t+\tau) angle^2 \le$	$\left\langle I^{2}(t)\right\rangle ^{2}$	$P_T(n$	$(\bar{n},\bar{n}) = \frac{1}{(1+\bar{n})}$	$rac{1}{n(1+rac{1}{n})^n}$
g ⁽²⁾ (0) is max in ➔ so-called pho		$^{(2)}(\tau) \le g^{(2)}(0)$		$g^{(2)}$	(0) = 2	
Remarking that $~ig\langle I^2$	$\left {{\left\langle t \right\rangle}} \right\rangle \ge \left\langle {I(t)} \right\rangle ^2$	$\mapsto g^{(2)}(0) \ge 1$	Ď	IC	or $ar{\mathrm{n}} \ll 1~P_2$ =	= P ₁
	Classical g ⁽²	²⁾ (0) is always greater	r than I !			

Quantum advantage

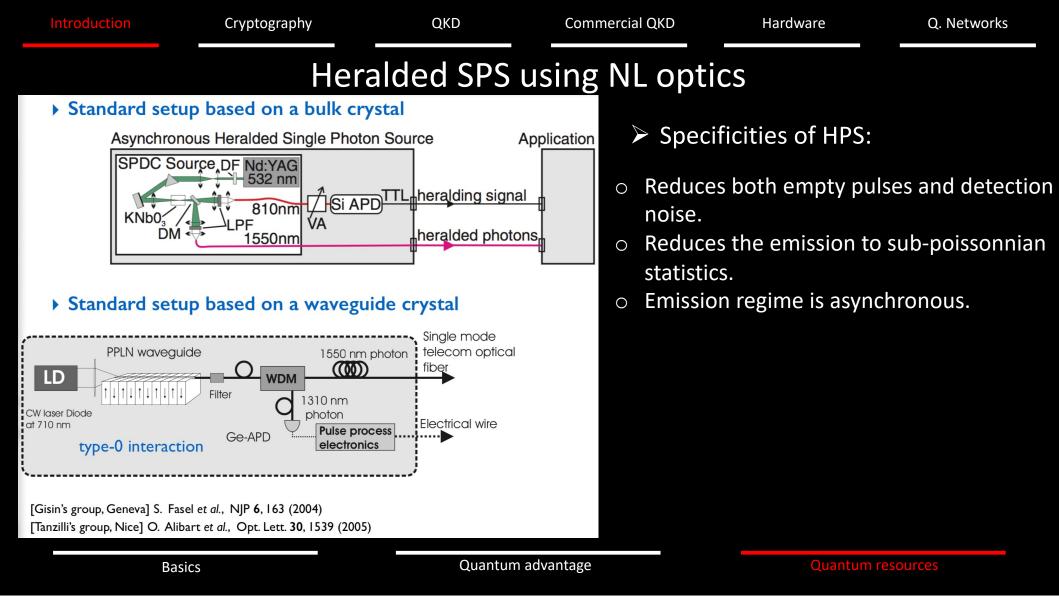
	Introduction Cr	yptography	QKD	Commercial QK	CD Hardy	ware	Q. Networks
	quantu	m descrip	otion of the	autoco	rrelation	function	
•	Quantum description of	of the EM field	$E(z,t) = E^{\dagger}(z,t)$	+E(z,t) S	Simple 2-level	system:	
	$a^{(2)}(\tau) = \langle$	$rac{E^{\dagger}(t)E^{\dagger}(t+ au)}{E^{\dagger}(t)E(t)} \langle E^{\dagger}(t)$	E(t+ au)E(t)		o Single em	itter	
	$g^{++}(r) = \frac{1}{\langle E \rangle}$	$E^{\dagger}(t)E(t)\rangle\left\langle E^{\dagger}(t) ight angle ight angle $	$(+\tau)E(t+\tau)\rangle$		Rate equa	tions show:	
	$\mapsto g^{(2)}$	$(\tau) = \frac{\langle I(t+t) \rangle}{\langle I(t) \rangle}$	$\frac{\tau}{(t)} \frac{I(t):}{(t)}$		$g^{(2)}(au)$ =	$= 1 - e^{-(s)}$	$\Omega{+}\Gamma) au$
	Take care !		<i>y</i>)/				
	$\langle : : angle ightarrow$ the operators are $E^{\dagger}(t)$ and $E^{\dagger}(\pmb{ au})$ do not comm			nymore	$\int g^{(2)}($	0) = 0	
		\rightarrow g ⁽²⁾ (0) can		,	$\int g^{(2)}($	$egin{aligned} 0) &= 0 \ 0) &\leq g^{(2)}(\end{aligned}$	au)
•	Single mode operation	$\mapsto g^{(2)}(0) = 0$	$\frac{\left\langle a^{\dagger}a^{\dagger}aa\right\rangle}{\left\langle a^{\dagger}a\right\rangle^{2}}=\frac{\left\langle \widehat{n}\left(\widehat{n}-\frac{1}{2}\right)\right\rangle }{\left\langle \widehat{n}\right\rangle }$	$\frac{(-1)\rangle}{2}$	Great	ļ	
		with $\widehat{n}=a^{\dagger}a$	photon number opera	tor			
		$\langle \alpha \rangle$	number of photons in th				
	Basics		Quantum adv	antage		Quantum resourc	es

Basics

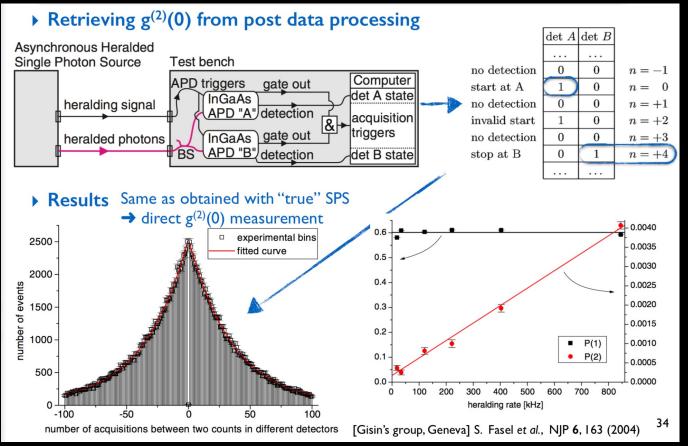
Quantum advantage


Quantum resources

duction	Cryptography	QKD	Commercial QKD	Hardware
	True SPS	S using N	V center in dia	mond
▶ 5	Standard setup bas	sed on Confo	ocal microscopy	
	(a) (b) (b)	DM Spect	APD F F BS APD APD rograph	


Quantum advantage

Quantum resources


Q. Networks

Quantum resources

Heralded SPS using NL optics

Quantum advantage

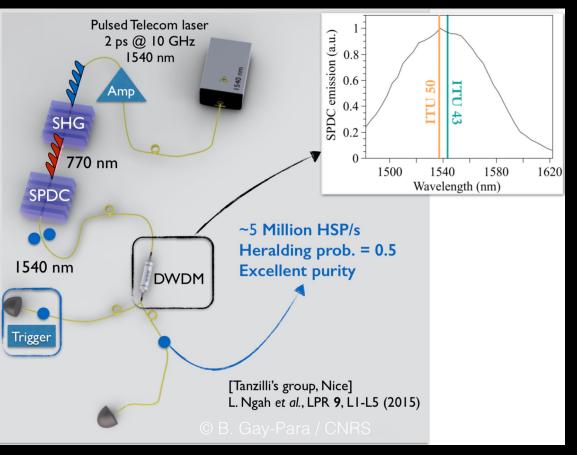
Heralded SPS using NL optics

Summary

Source	λ (nm)	P0	P1	P2	g ⁽²⁾ (0)	H rate (kc/s)
Waveguide	1550 / 1310	0.63	0.37	7.10 ⁻³	0.08	~100
Waveguide	1550 / 810	0.4	0.6	-	2.10 ⁻³ - 1	0.4 - 1000
Bulk	1550 / 810	0.39	0.61	2.10-4 -4.10-3	2.10 ^{-3 -} 2.10 ⁻²	20 - 800

From this old comparison table we can see that over a 10 years effort we notice a quick saturation in the achievable heralding rate...

How to go beyond those results?

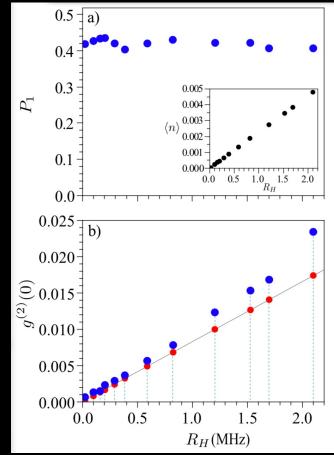

[Tanzilli's group, Nice] O. Alibart et al., Opt. Lett. **30**, 1539 (2005) [Gisin's group, Geneva] S. Fasel et al., NJP **6**, 163 (2004) [Silberhorn's group, Paderborn] S. Krapick et al., NJP **15**, 033010 (2013)

Basics

Quantum advantage

Quantum resources

Heralded SPS using NL optics


The solution was to increase dramatically the repetition rate!

Basics

Quantum advantage

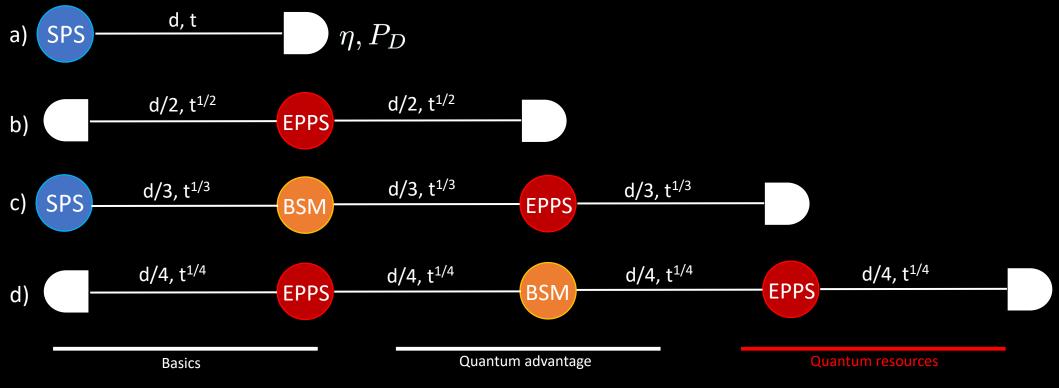
Quantum resources

Heralded SPS using NL optics

Table 1 Experimental results for different HSPS realizations. For each group, only the values corresponding to the highest measured R_H have been reported.

	P_1	η_D	R_H	$\langle n \rangle$	$g^{(2)}(0)$
Nice	0.42	0.17	2.1 MHz	0.005	0.023
Geneva [11]	0.45	0.50	4.4 MHz	0.1	0.18 ^a
Paderborn [9]	0.60	0.55	105 kHz	_	0.40
Turin [25]	0.13	0.40	$\sim \! 10 \ kHz^b$	-	0.0050
Vienna [13]	0.82	0.95	6 kHz	_	-
Tokyo [16]	< 0.3	0.70	$\sim \! 150 \ kHz^b$	0.00021	-
Nice ^c	0.5	0.90	15 MHz	0.005	$\lesssim 0.020$

^atheoretically calculated. ^bestimated from reported data and P_1 . ^cexpected values.

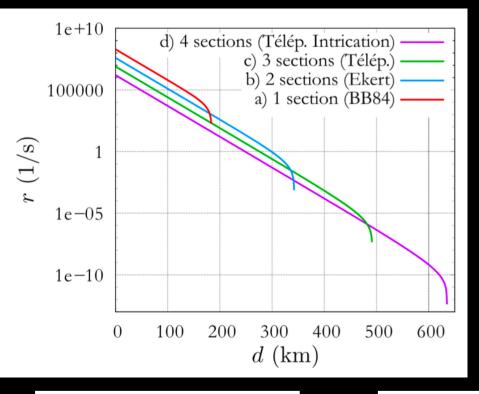

[Zbinden's group, Geneva] E. Pomarico et al., OPEX 20, 23846 (2012)

Introduction	Cryptography	QKD	Commercial QKD	Hardware	Q. Networks

Context of today's quantum communication

Exploiting single qbits and ebits

Distribution of quantum bits of information using single photon and entangled photon pair sources over long distances.



Introduction	Cryptography	QKD	Commercial QKD	Hardware	Q. Networks

Context of today's quantum communication

Exploiting single qbits and ebits

One can show that with N sections of length d/N the probabilities of a true and false detection are:

$$P_D = \eta^N t$$

$$P_{noise} = \left[(1 - \eta t^{1/N}) P_{DC} + \eta t^{1/N} \right]^N - \eta^N t$$

Collins, D., N. Gisin et H. De Riedmatten. 2005, «Quantum relays for long distance quantum cryptography», *J. Mod. Opt.*, vol. **52**, p. 735–753

Basics

Cryptography

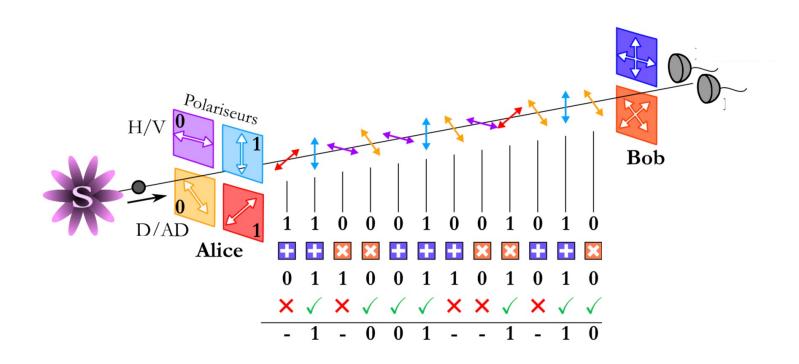
Quantum Key Distribution

Commercial QKD

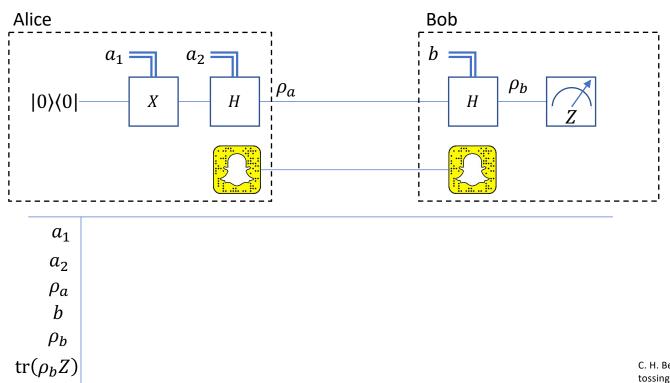
QKD – Protocols

Discrete Variable QKD

- BB84
- BBM92


Continuous Variable QKD

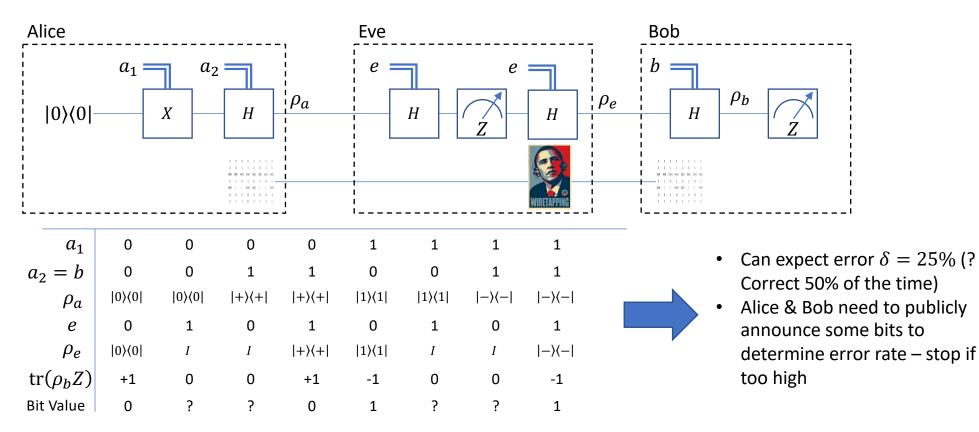
- Gaussian Protocols
- Discrete-Modulation Protocols


Distribute Phase Reference QKD

- COW
- DPS

BB84 Review

BB84 Review

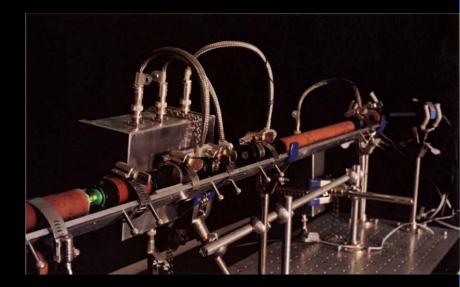


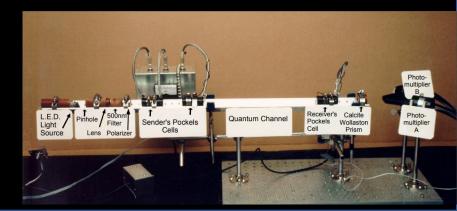
Bit Value

- $a_1, a_2, b \in \{0,1\}$ chosen randomly
- Need classical communications channel to compare a₂, b
- Only use outcomes where $a_2 = b$ called sifting
- Repeat many times to build up key

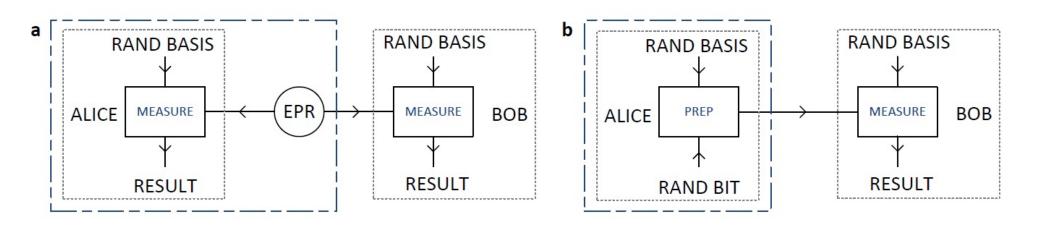
C. H. Bennett and G. Brassard. "Quantum cryptography: Public key distribution and coin tossing". In *Proceedings of IEEE International Conference on Computers, Systems and Signal Processing*, volume 175, page 8. New York, 1984

BB84 Review – Eve Attacks

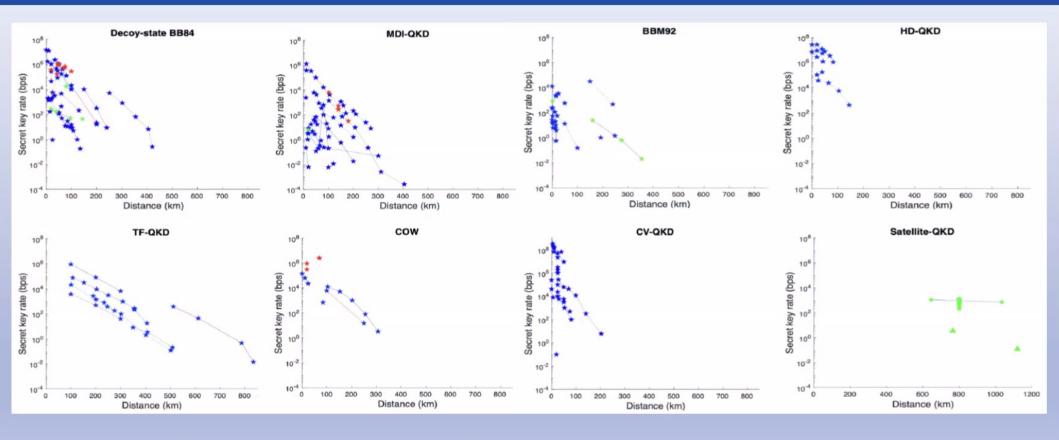

BB84 Questions


This description raises some questions for implementation

- What if Eve performs another type of attack?
- What happens if Eve performs a collective attack?
- What happens if Eve has some sort of memory?
- How does this work across lossy channels?
- Experimental imperfections loss, device imperfections, etc?
- What happens if Eve isn't confined to her box?


BB84 Questions

"...power supplies make noise, and not the same noise for the different voltages needed for different polarizations... Thus, our prototype was unconditionally secure against any eavesdropper who happened to be deaf!" – Gilles Brassard, Brief History of Quantum Cryptography: A Personal Perspective, quant-ph/0604072

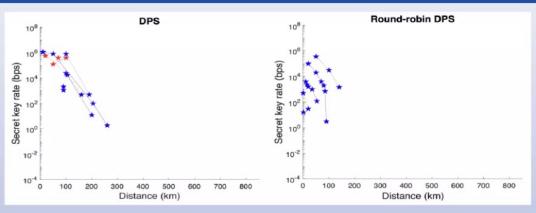


QKD Protocols – BB84 vs BBM92

📄 Performance Evaluation: Demonstrated secret key rates 🔛

Telefónica

Τ.


- Sensitive not classified For OSAFE and EC Internal use only - OCI4EU - OSAFE - Ref: CNECT/LUX/2020/CPN/0062

27/06/2022

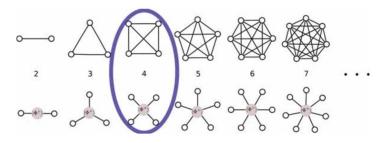
20

Performance Evaluation: Demonstrated secret key rates

Decoy-state BB84	Max distance	Max rate
Restricted attacks	421 km – 0.25 bps (Finite Collective) 13.72 Mbps - 400m (Finite Colle	
Finite-key &	240 km - 8.4 bps	10 Kbps – 150 km
Coherent attacks	1034 km – 700 bps – (satellite)	1.32 Kbps – [600,1000] km (satellite)

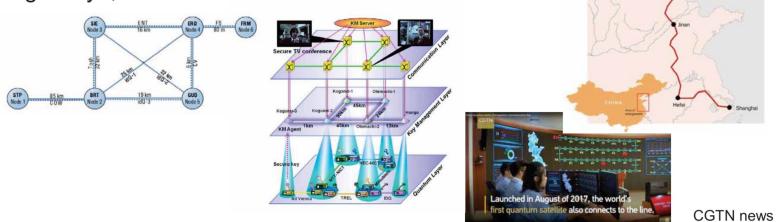
MDI-QKD	Max distance	Max rate	
Restricted attacks	54 dB loss – 8 bps (Asymptotic)	1.257 Mbps – 2.33 dB loss (Asymptotic)	
Finite-key & Coherent attacks	404 km - 3.2x10 ⁻⁴ bps	6 Kbps – 42 km	

TF-QKD	Max distance	Max rate	
Restricted attacks	81.2 dB - 0.0176 Kbps (Asymptotic)	425.7 Kbps – 100 km (Asymptotic)	
Finite-key &	833.8 km - 1.4x10 ⁻² bps	20.6 Kbps – 101 km	
Coherent attacks			


DPS	Max distance	Max rate		
Restricted attacks	260 km – 1.85 bps (Asymptotic individual)	1.16 Mbps – 10 km (Asymptotic individual)		
Finite-key & Coherent attacks	-	-		
Round-robin DPS	Max distance	Max rate		
Restricted attacks	140 km – 1.45 Kbps (Asymptotic)	360 Kbps – 50 km (Asymptotic)		
Finite-key & Coherent attacks	90 km – 3 bps	20 Kbps -50 km		
BBM92	Max distance	Max rate		
Restricted attacks	71 dB – 0.02 bps (Asymptotic) (free- space) 248 km – 1.4 bps (Asymptotic)	30 Kbps – 30 dB (Asymptotic)		
Finite-key & Coherent attacks		1120 km – 0.12 bps (satellite)		
HD-QKD	Max distance	Max rate		
Restricted attacks	43 km-1.2 Mbps (Finite Collective)	26 Mbps – 0.1 dB (Finite Collective)		
Finite-key &	145 km -0.42 Kbps	26.2 Mbps – 4 dB		
Coherent attacks				
CV-QKD	Max distance	Max rate		
Restricted attacks	202.81 km - 6 bps (Finite Collective)	327 Mbps – 5 km (Asymptotic)		
Finite-key & Coherent attacks		-		

QKD Networks

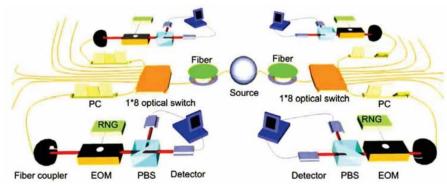
QKD is inherently a point to point / peer to peer protocol Mostly with 2 party implementations Networks are a challenge!

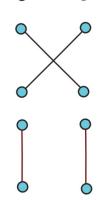


Fully connected networks are harder

QKD Networks

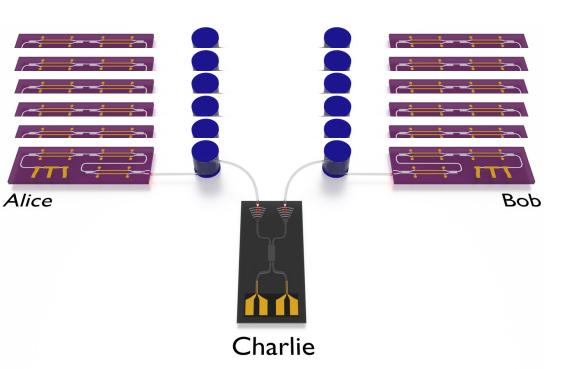
- Trusted nodes (i.e. lower security)
- Complex and resource hungry
- E.g. Tokyo, Vienna and China networks

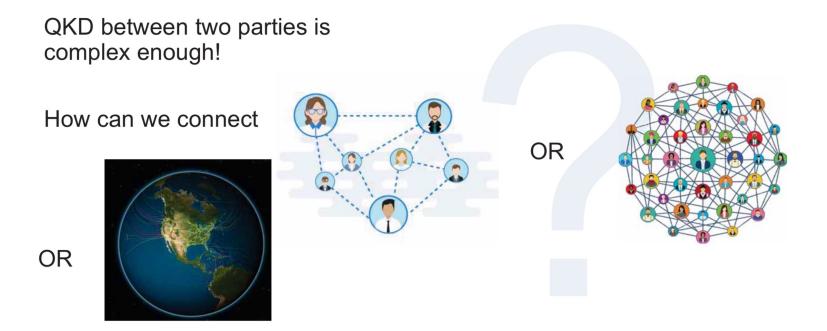

Sasaki, M., et al., Optics Express 19.11 (2011): 10387-10409 Peev et al, New Journal of Physics 11 (2009) 075001 http://spectrum.ieee.org/telecom/security/ chinas-2000km-quantum-link-is-almost-complete


OKD Networks

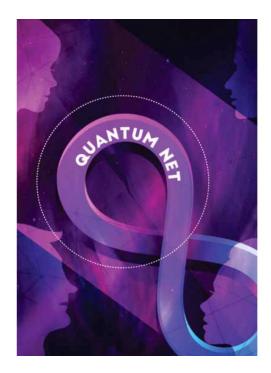
E.g. Access networks

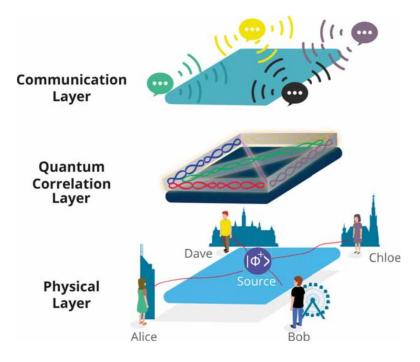
- Single source
- Many users


- Active switching (slow, no simultaneous access)
- Limited connectivity
- Not anonymous



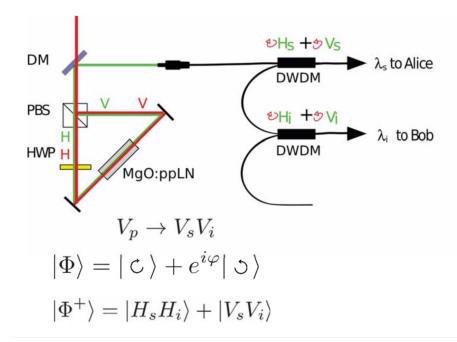
MDI QKD for Networks

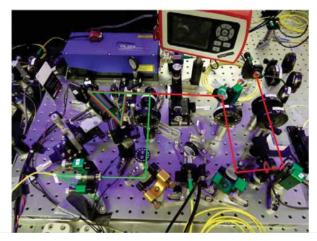

- Resource sharing and scalability
 - Detection, time tagging and switching can be centralised
- N fibres instead of $\frac{1}{2}N(N-1)$
 - Reduced resources for fully connected graph
- Trusted node not required
- Cheap transmitters give access to quantum secured network

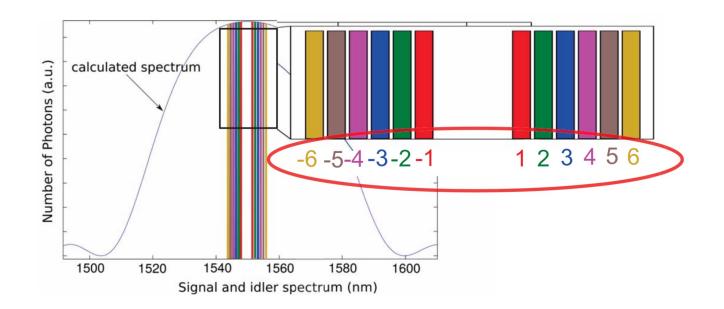


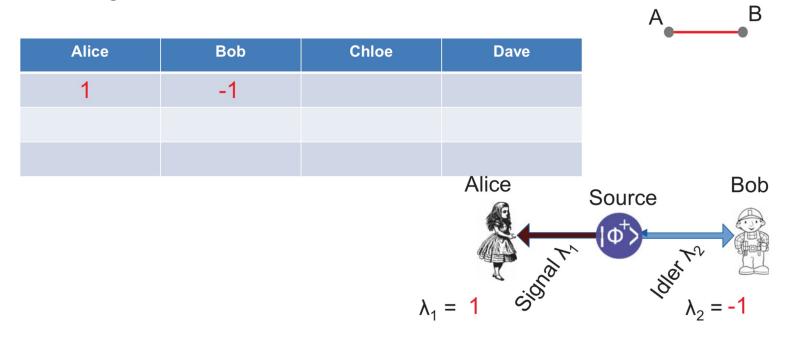
Integrated Switches

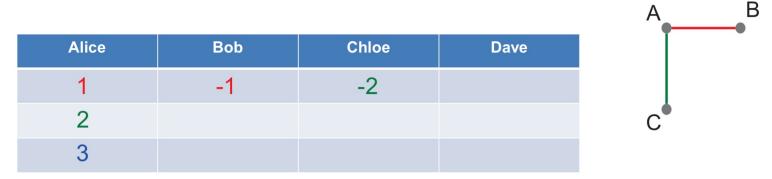
4 User entanglement distribution quantum network

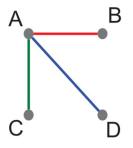


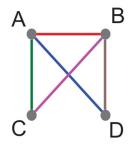

Every user talks to every other user simultaneously


Share a different bi-partite entangled state between each pair of users


A single source of entanglement serves all users via just one fibre each


- Type 0
- Ultra bright
- Broadband




Nature 564 (7735), 225

Alice	Bob	Chloe	Dave
1	-1	-2	-3
2			
3			

Alice	Bob	Chloe	Dave
1	-1	-2	-3
2	4	-4	-5
3	5		

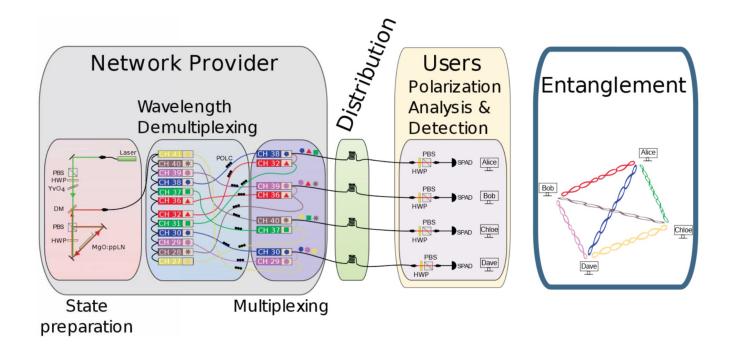
Alice	Bob	Chloe	Dave
1	-1	-2	-3
2	4	-4	-5
3	5	6	-6

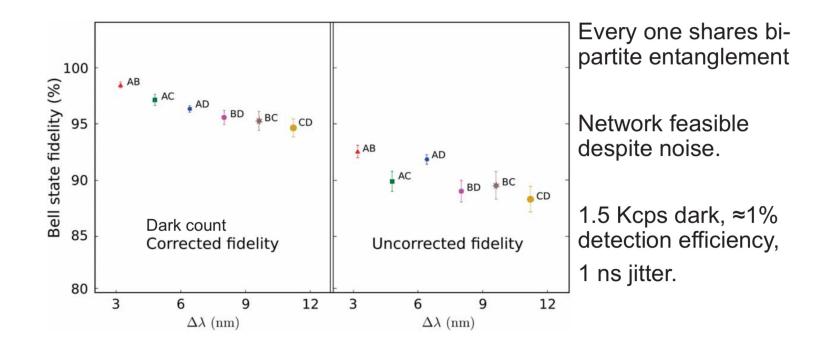
Now we have a fully connected entanglement based network

Nature 564 (7735), 225

В

Π

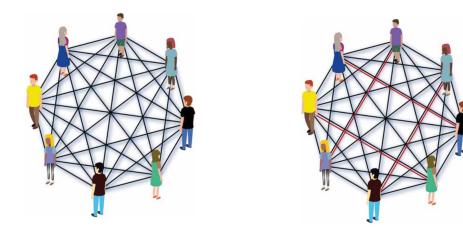

Α

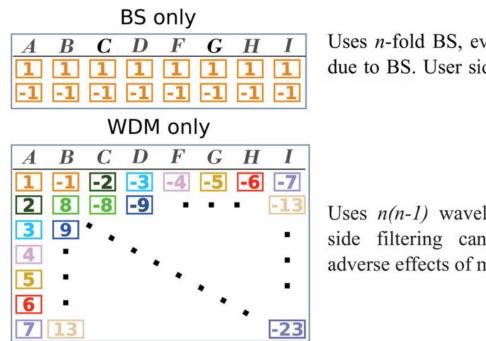


Alice	Bob	Chloe	Dave	art Draw
1	-1	-2	-3	
2	4	-4	-5	
3	5	6	-6	1111 111 M
				THE STATES AND A

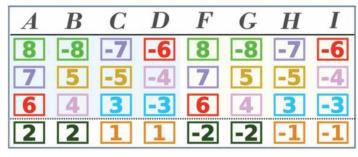
As simple as choosing who gets which wavelength!

Nature 564 (7735), 225

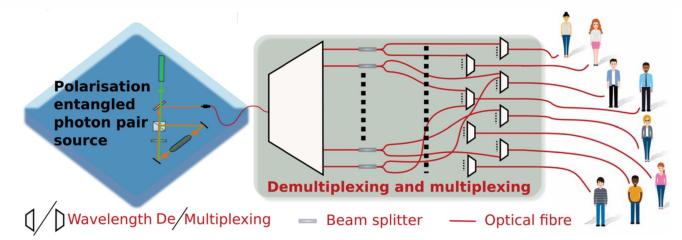



8 User metropolitan quantum networks

Double the number of users Improve scaling Go from entanglement distribution to full QKD Demonstrate QKD in real environments Incorporate traffic management

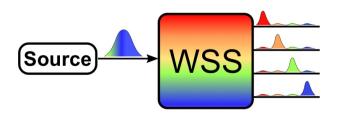


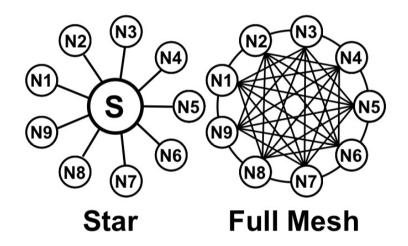
Uses *n*-fold BS, every link has $1/2^n$ loss due to BS. User side filtering impossible

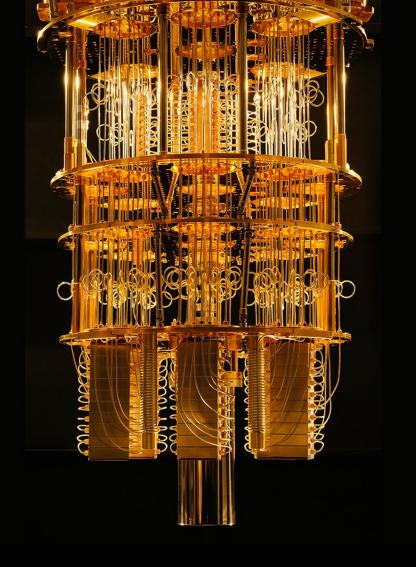

Uses n(n-1) wavelength channels. User side filtering can completely reverse adverse effects of multiplexing

New J. Phys., vol. 13, p. 063039, 6 2011, Nature, vol. 501, pp. 69, 9 2013, Nature, vol. 385, pp. 47, 1997 Nature 564 (7735), 225 Combining both solutions to **improve scaling**

Subgroups




Divide network into identical subgroups each with a WDM only topology. Additional channels used to interconnect subgroups. Combines above topologies. Uses *2n* wavelength channels



Entanglement-based QKD

There are many different quantum protocols for key distribution. The entanglementbased protocols are the only ones offering the unique feature of sharing of sharing a key between all users of a given topology without having to establish a physical link. They all inherit the correlations by being connected to the same source of entanglement.

Thank you for your attention !

Let's keep in touch !

LinkedIn \rightarrow Djeylan Aktas, PhD E-mail \rightarrow Djeylan.aktas@savba.sk