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Second quantum revolution

e First quantum revolution (20t
century): understanding the laws of
guantum theory and finding direct
uses of observed phenomena
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Second quantum revolution

e First quantum revolution (20t
century): understanding the laws of
guantum theory and finding direct
uses of observed phenomena

Core’2 Quad

e Second quantum revolution (now):
using guantum theory to prepare
conditions for manipulation and
targeted use of quantum systems

« New progress requires new language
—theory of quantum information




QUANTUM ELEMENTS

Building blocks of understanding quantum




tate, evolution and measurement...

State preparation Evolution Measurement




Quantum states

 State is an element from Hilbert space A
1. Vector space over C vectors are V) (called ket)

2. Has aninner product {p|¥)mapping pairs of vectors to

e Positivity: (y|y) >0for |y) #0
o Linearity: {(¢pl(aly1) + bly2)) = alPply) + b{plyr)
o Skew symmetry: (p|y) = (y|p)”
3. Completeinnorm || = (1//|1//)1/2 g
 Superposition: |y)=al0)+b|l)+...=| Db

« Normalization: (yly)=1= Iczl2 + Ibl2 +...=1

:C

Too complicated for what we
need

State is the most complete
description we have of the
quantum system

)




From bit to qubit (two-level q. state)
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Qubit

. State is an element from Hilbert space: . # =C?
e Orthonormal basis elements: |0), |1)

e There are other bases:

1 1
—(0) +11), =) =—=(0) —[1
\/§(|>+|>)|> \/Z(H 1))

1 1
5[(1+i)|0>+(1— DD, 5[(1—i)|0>+(1+ 1)|1)]

+) =

« Bloch sphere (up to the global phase):

¢ 0 .¢
W) = cos Ee_lf |0) + sin Eelf 1)

e Possible realizations: spin-% particles, light polarizations, nuclear spins, Josephson
junctions, quantum dots, ...




Qubit .

0)

. State is an element from Hilbert space: . # =C?
e Orthonormal basis elements: |0), |1)

e There are other bases:

1 1
—(0) +11), =) =—=(0) —[1
\/§(|>+|>)|> \/Z(H 1))

1 1
5[(1+i)|0>+(1— DD, 5[(1—i)|0>+(1+ 1)|1)]

+) =

« Bloch sphere (up to the global phase):

¢ 0 .¢
W) = cos Ee_lf |0) + sin Eelf 1)

1)

e Possible realizations: spin-% particles, light polarizations, nuclear spins, Josephson
junctions, quantum dots, ...




Qubit
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e Possible realizations: spin-% particles, light polarizations, nuclear spins, Josephson




Quantum states

e State is an element from Hilbert space A’
1. Vector space over C vectorsare [¢)

2. Hasaninner product ($|y¥mapping pairs of vectorsto :C
e Positivity: (y|y) >0for |y) #0
e Linearity: (¢pl(aly1) + bly2)) = aldly1) + b{ply2)

o Skew symmetry: (p|y) = (y|p)”
3. Completeinnorm |y| = (1/,|w>1/2

a 1 ]
e Superposition: |y)=al0)+b|1)+...=| b |+) =—=(0) + (1)), [-) = —2(|0> — 1))

V2 V2

« Normalization: (yly)=1= Ial2 + Ibl2 +...=1




What we know so far

« State is the most complete description we have of the quantum system

e It is more complex than a classical state




State, evolution and measurement...

State preparation Evolution Measurement




State evolutions

e Changes to systems are described as application of some transformation on our
state: Ulwy)

e Here U is a unitary operator (matrix), i.e. U'Uu =1
e And U is always some Hamiltonian evolution H for specific time t:
L = eth
« Unitarity conserves normalization and makes computation reversible

e In this lecture we will not talk about decoherence effects or non-unitary evolutions
to keep the things simple




Qubit evolutions

« Similarly as qubits, we can express also qubit
evolutions in Bloch representation (up to a
phase):

A -1 2 W Cl) w
Unw)=e

9 =1cos— —if-osin—
2 2

NS

e Here 7 represent a unit vector, «is the
angle and ois a vector of Pauli matrices:

(01 (0 i (10
9x=110)7 9YTli o) 9710 -1

Rotation Rotation Rotation
around x around y around z




Qubit evolutions

« Similarly as qubits, we can express also qubit
evolutions in Bloch representation (up to a
phase):

N —i%a-0 w w
Unw)=e

9 =1cos— —if-osin—
2 2

NS

e Here 7 represent a unit vector, «is the
angle and ois a vector of Pauli matrices:

(01 [0 —i (1 0)
=10/ 977li o) 79770 -1
1 )

« Hadamard matrix: H:\/_:—(1 I

V2l =1
e Every unitary U defines a basis
{U10),U|1)}




What we know so far

« State is the most complete description we have of the quantum system
e It is more complex than a classical state

 State changes are reversible, described by unitaries




State, evolution and measurement...

State preparation Evolution Measurement




Stern-Gerlach experiment
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Stern-Gerlach experiment
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Measurements

« Measurement on part of the system is given by (Hermitian) observable A an the
average value we observe is given by formula

(A) = (W[A[) = TrlAlY) (]
 Alternatively we can use spectral decomposition of the observable
A=) ali)]

o Measuremejnt of Ain the general state |¢yields result awith probability given by
Born rule

p(5) = Te(l7) Gl - o) (1] = Gl 7
» The post-measurement state is |7 measurement problem — “collapse” of the state

» Heisenberg uncertainty relations — not all measurements are possible to be
performed together




Qubit measurements

« Measurement is always in some basis, e.g. |0), |1)
basis for observable

 Stochastic! The probability to get result

p(1) = |[{1]y)||* = sin*(0 /2)with the state being |1)

e Usually, we do not have the luxury of having a state
multiple times — we can get only limited information
about it

i

(10 /,
-\ -

///l/

p(0) = [[{0])||? = cos?(6 /2)with the state being  [0) |
= |

1)

0 ¢ .0 0
ly) = COSEG 210) +sm§e 2|1)




Qubit measurements

« Measurement is always in some basis, e.g.
basis for observable

(01
9x=\10
 Stochastic! The probability to get result

1 :
p(£) = | (£)II” = 5(1 £sinf cos §)
with the state being |%)
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Qubit measurements

« Measurement is always in some basis, e.g. |[+), |—)

basis for observable
(01
9x=\1 0
 Stochastic! The probability to get result

1 :
p(£) = | (£)II” = 5(1 £sinf cos §)
with the state being |%)

e If we measured + and do now measurementinO, 1
basis, the results will be completely random
irrespective of what |y)was

/
/
/
l
f
| > ! //
| o
P
2
2
E

1)

0 _o :
|w>:cos§e 210) + sin

Uit 1)
—e
2




What we know so far

« State is the most complete description we have of the quantum system
e It is more complex than a classical state

 State changes are reversible, described by unitaries

e Measurements give random results and “collapse” the state

« We cannot get all the information from the state by measuring it

POTENTIALITY OF

QUBIT




TWO QUBITS




Bipartite systems

 Hilbert space of a composite system A-B is the tensor product ./ = /4 ® /5

o If system A is prepared in state  |v¥) gand system B in state |prlre composite
stateis |y)A®|P)p

e The states |i,u)ap=1i)a®|u)ypwhere {|i),dnd {|u) @re basis states for systems
A and B, form orthonormal basis of the composite system with inner product

I, uliv =0;i0
e The tenso’?'Bp<roéfUct 36]e3ratolr’aé% on subsystems separately:

« It can act'dA BRLBO P8 stlfd Ao e VB B

Ma®TglJ,v)ap=Malj)a®|V)B

ly) Q Alice: Earth Bob: Andromeda galaxy Q [0);




Measurements on bipartite systems

« Measurement on part of the system
(A) = AB(VIART|W) ap = Tr[A® 1|\W¥) 4p(V|]

« Spectral decomposition of composite observable is

Ae 1= Za]m(]I ®1=) ajlj){jl®lk) k|
j.k
e The general state

|\P>AB=ch kljy®1k)

Jik
» The measurement yields result ~ awith probability  p(j) = Zp(] k) = Z ¢kl
and the post-measurement state is

Wi)B = 7%’ Cj il k)




Bringing qubits together

. Two-qubit Hilbert space . #° =C* & C?
» Basis states:
10) ®0) =100) 10)®[1) =101) 1) ®0) =[10) De[1)=]11)

« States are no longer representable by Bloch spheres!

1
Vi) =—=(00)+]|11
) = —=(00) £ 11) #




Bringing qubits together

« Two-qubit Hilbert space . = C*® C?
e Basis states:
10) ®0) =100) 10)®[1) =101) 1) ®0) =[10)

« States are no longer representable by Bloch spheres!

1
W) = —(00) £ 11 —
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Hell)=[11)




Density operator

e Having a bipartite system A-B, we might only have
access to one of its parts, let’s say A and B might
be inaccessible

« B might be e.g. environment, or part of the state
sent to Bob in Andromeda galaxy

e Our description of state is pa we call it the
density operator

1)




Density operator

e Having a bipartite system A-B, we might only have
access to one of its parts, let’s say A and B might
be inaccessible

« B might be e.g. environment, or part of the state
sent to Bob in Andromeda galaxy

e Our description of state is pa we call it the
density operator

Density matrix is the most
complete description we
have of the quantum system
(locally)

The density matrices
together give less
information than that of the
joint (pure) state — where is
the rest of the information?




What we know so far

« State is the most complete description we have of the quantum system
e It is more complex than a classical state

 State changes are reversible, described by unitaries

e Measurements give random results and “collapse” the state

« We cannot get all the information from the state by measuring it

e The state of two qubits is more than just the product of the qubits’ states

The density matrices
together give less
QUBIT REGISTERS information than that of the
joint (pure) state — where is
the rest of the information?




ENTANGLEI\/IENT

R paradox and non-locality




Entanglement v. classical correlations

Scott Kelly Mark Kelly

Correlations are “stronger”
in the quantum case




Bell basis w

1
« We were talking about the states |WV.) = E(IOO) +1(11))

e These are orthogonal, but we can make a full basis of maximally entangled states
by taking

1 1
Vi) =0eDV,) = E(IOW +[11)) Wx)=(0x@D|V) = E(Il()) +01))

1 i
(W2)=(0,8MN|Vy) = EUOO) —|11}) =[W¥_) [I‘Py> =(o,®ND|¥;) = E(HO) — |01>)]
e Conversely we can write
1 1
00) =—(¥Y;)+ |V, 01) =—(|¥Y) +1|¥
100) \/E(l ++1¥2)) 01) \/E(l ) +i|Wy))
1 1 :
111) = E(I‘PQ —|¥2)) 110) = —=(W¥) —1[¥))

V2




Singlet state

i
o All Bell states are useful, but state |¥,) = —2(|10) —|01)has an interesting

7

property, that it has the same form in every basis
e In particular we can also write it as
i

| -
|y>\/§

(I=+)=1+=))

e This state is called singlet




EPR paradox

e Einstein, Podolsky, Rosen (1935) — spooky action at a distance

1
—(]10) — |01
\/Z(l ) —101))

[Wy)

OO

* Let us have entangled state: |¥y) =

Einstein, A; B Podolsky; N Rosen — Can Quantum-Mechanical Description of Physical Reality be Considered
Complete?, Phys. Rev. 47, 777-780 (1935)




EPR paradox

e Einstein, Podolsky, Rosen (1935) — spooky action at a distance

i
* Let us have entangled state: |¥y) = E(IlO) —101))
Alice: Earth Bob: Andromeda galaxy
IWy)

QO

Einstein, A; B Podolsky; N Rosen — Can Quantum-Mechanical Description of Physical Reality be Considered
Complete?, Phys. Rev. 47, 777-780 (1935)




EPR paradox

e Einstein, Podolsky, Rosen (1935) — spooky action at a distance

i
* Let us have entangled state: |¥y) = E(IlO) —101))

Alice: Earth Bob: Andromeda galaxy

o If Alice measuresin {|0),|1)basis, then if she measures 0, she immediately knows
Bob will measure 1 and if she measures 1, Bob will measure O

Einstein, A; B Podolsky; N Rosen — Can Quantum-Mechanical Description of Physical Reality be Considered
Complete?, Phys. Rev. 47, 777-780 (1935)




EPR paradox

e Einstein, Podolsky, Rosen (1935) — spooky action at a distance

\%2(|—+>—|+—>)

Alice: Earth Bob: Andromeda galaxy

- S

o If Alice measuresin {|0),|1)basis, then if she measures 0, she immediately knows
Bob will measure 1 and if she measures 1, Bob will measure O

* Let us have entangled state: |¥,) =

e If Alice measuresin {|+),|—WBasis, then if she measures +, she immediately knows
Bob will measure — and if she measures —, Bob will measure +

Einstein, A; B Podolsky; N Rosen — Can Quantum-Mechanical Description of Physical Reality be Considered
Complete?, Phys. Rev. 47, 777-780 (1935)




EPR paradox

e This is paradoxical because:

e It is reasonable to assume that the measurement in a galaxy far, far away....
cannot affect our state

» But then, together with the strong correlation, it implies, that all the
measurements outcomes have to be predetermined at the point of their creation

e This in turn means that even the possibilities ruled out by the Heisenberg
uncertainty principle are somehow determined for every state

« EPR: As our description of states conforms to the uncertainty principle, it
has to be incomplete

e Bell: QM is weird; this incompleteness has measurable consequences




J.S. Bell = On the Einstein Podolsky Rosen Paradox, Physics, 1: 195—-200 (1964)
J.F. Clauser; M.A. Horne; A. Shimony; R.A. Holt — Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett., 23: 880 (1969)

CHSH

e Measurements A and B have two-outcomes a,be {—1,+1}

e They both gather statistics on their joint probability P(aq, blA;, Bj)

[ on auice. voure Y BUT B2B. N A
THE ONE FOR ME /i QUANTUM WORLD
- HOW CAN WE BE SURE?
Ay
=
5
2 A2

(C) John Richardson




CHSH and local realism

e From these probabilities they can compute correlation functions

C(A;, Bj) = ) abP(a,blA;, B))
a,b
e Then they compute

B=C(A, By) + C(A1,Bs) + C(Ap, By) — C(Az, B)

e It looks reasonable to assume (but do not take it for granted!) that the system
obtains its properties during the preparation and these properties for each system
determine what the results of different results will be (local realism):

P(a,blA;,Bj) =) _P(alA;,\)P(b|Bj, \)P(A)
A

Q Alice: Earth Bob: Andromeda galaxy o




CHSH and local realism

e Let uscompute B=C(A;,B;)+C(Ay,By) + C(Ay, B;) — C(A», By)

e Under local realism C(A;, Bj) = Z(A,)MB])AP(A)
where

(Ajyr =)_aP(alA;, ) (BjY2=)_bP(b|Bj,\)
« Then ) ’

B=) [KADA(B1)a+ (A1) A(B2)1 + (A2)2(B1)1 — (A2) 1(B2)A]P(A) <2
e And so (CI/}ISH inequality)

B=C(Ay,B)) +C(A1,By)+C(Ay,B1) —C(A2,By) <2

Q Alice: Earth Bob: Andromeda galaxy O




CHSH in the quantum case

. 1
« Now let Alice and Bob share state |V_) = —2(|OO> —[11))

7

OH ALICE. YOURE Y

v_)
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asetens,
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Az

BUT Z258.. IN A
QuaNTum WORLD
HOW CAN WE BE SURE?

(C) John Richardson




CHSH in the quantum case

1
« Now let Alice and Bob share state |V_) = —2(|OO> —[11))

\/_
« We now have C(Ai,Bj) =(V_|A; ®Bj|\P_>

 Taking (check the outcomes)

1
Al =0 Ay=0, Bi=—(0,—0y) By=——(0,+0x)=—H

. V2 V2
we find:

1
C(A1,B1) =C(Ag,B1) =C(A1,B2) = —C(A2,By) = —
\/E Non-locality
e The CHSH inequality is thus violated: B=2v2>2

e This violation is due to quantum correlations being different from classical

e The violation of 2v/2is maximal (Tsirel'son bound)




EPR paradox (continued)

e Einstein, Podolsky, Rosen (1935) — spooky action at a distance
i

* Let us have entangled state: |¥,) = \/E(l —+)—[+-))
Alice: Earth Bob: Andromeda galaxy
1) 0) = —=(+) + =)

R N
o If Alice measuresin {|0),|1)basis, then whatever she measures, if Bob will decide to
measure in the {|+),|—)}asis he will be getting the two basis states with equal probability

e But he would be getting those even if Alice would measure in the basis (why?)

{|+>) _>}

« So they can reveal the “paradox” only after communicating — no FTL comrlnunication




What we know so far

« State is the most complete description we have of the quantum system

e It is more complex than a classical state

 State changes are reversible, described by unitaries

e Measurements give random results and “collapse” the state

« We cannot get all the information from the state by measuring it

e The state of two qubits is more than just the product of the qubits’ states

e Quantum theory is non-local




USEFULNESS OF

QUANTUM INFORMATION




Second quantum revolution

e First quantum revolution (20t
century): understanding the laws of
guantum theory and finding direct
uses of observed phenomena

Core’2 Quad

e Second quantum revolution (now):
using guantum theory to prepare
conditions for manipulation and
targeted use of quantum systems

Quantum assisted
communication

Quantum computation J Quantum sensing J




Possibilities of Quantum

computers

e Shor’s algorithm and other
algorithmic applications.

e Material design

R. Feynman, Simulating Physics with Computers, International
Journal of Theoretical Physics 21, 467 (1982)

and therefore full attention and
phenomena—the challenge of exp
—has to be put into the argument, an
be understood very well in analyzing the situation. And I’'m not happy wi
all the analyses that go with just the classical theory, because nature isn’t
classical, dammit, and if you want to make a simulation of nature, you’d
better make it quantum mechanical, and by goily it’s a wonderful problem,
because it doesn’t look so easy. Thank you.

9. DISCUSSION

Question: Just to interpret, you spoke first of the probability of A given




Possibilities of Quantum

computers

e Shor’s algorithm and other
algorithmic applications.

e Material design

e Drug invention and chemical
compounds

e Batteries

e Noisy Intermediate-Scale
Quantum technologies (NISQ):
simulators

R. Feynman, Simulating Physics with Computers, International
Journal of Theoretical Physics 21, 467 (1982)

Computer Michae| @ University College London
£ 1.6M, 265 TFLOPS
Just for car battery simulations

~




Current state-of-the-art QPUs

« Many companies working on a universal QPU: Honeywell, D-Wave, IBM, Google,
Microsoft, lonQ, Rigetti,

Scaling IBM Quantum technology

18M Q System One (Released Next family of IBM Quantum systems

2019 2020 2021 2022 2023 and beyond

27 qubits 65 qubits 127 qubits 433 qubits 1,121 qubits Path to 1 million qubits

and beyond
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QKD in practice

e Increased security
| @, MiClUS

« Well developed theory | | b (I
« Technological accessibility T

e From quantum links
to quantum internet

e Local quantum networks:
 DARPA, USA

 SECOQC, Vienna

e SwissQuantum, Geneva
« Tokyo QKD Network

« LANL (USA)

7600km

« China: Beijing-Shanghai, MICIUS




What we learnt (Conclusion)

« State is the most complete description we have of the quantum system

e It is more complex than a classical state

 State changes are reversible, described by unitaries

e Measurements give random results and “collapse” the state

« We cannot get all the information from the state by measuring it

e The state of two qubits is more than just the product of the qubits’ states
e Quantum theory is non-local

» Offers possibilities for faster computation or more secure communication




bey°nd

the obvious



POTENTIALITY OF QUBIT

Qubit is differ




Canyoudo vNOT

e NOT:
—— NOT —— NOTx=1—x

e vVNOT:

— vNOT vNOT = NOT —

e Classically clearly impossible. What about probabilistically?

D. Deutsch, A. Ekert, R. Lupacchini - Machines, Logic and Quantum Physics, The Bulletin of Symbolic Logic
Vol. 6, No. 3 (Sep., 2000), pp. 265-283; arXivimath/9911150 [math.HO]




Can you do vNOTprobabilistically?

e From bit to p-bit: n=(p,1 - p)which meansthat p0)=pnd p1)=1-p

e Any transformation Ms a stochastic matrix: Nnit1 = Mny

01
« We have Mpor = (1 0) and we want M, xoT = (200 ZOI) —sich that Mot = Mf/NT)T
10 M1

e Conditions:

2 _ —
Moo + Mo Mg = 0 Moo + N1 Mo = 1
2 —
mi;+mormio=0 Mooy + M1ymyo =1

« We cannot do v NOT even probabilistically; now let us look into the quantum case




Quantum VvNOT

« Similarly as qubits, we can express also qubit
evolutions in Bloch representation (up to a
phase):

A _ _igﬁ'(_)t_ w o A —> . w
Unw)=e 2 = ﬂcosg—m-asmg




Quantum VvNOT

« Similarly as qubits, we can express also qubit
evolutions in Bloch representation (up to a
phase):

R _i% 4.5 W W
Unw)=e

7 =1cos— —if-osin—
2 2

NS

e Our square root of NOT is:

. 1 (1 i
V_U(ex,n/Z)_VNOT_E(i 1)

 If we apply V twice we indeed get:

1
o,y=U(éy, ) =NOT = ((1) O)




What we know so far

« State is the most complete description we have of the quantum system
e It is more complex than a classical state

 State changes are reversible, described by unitaries

« Measurements give random results and “collapse” the state

« We cannot get all the information from the state by measuring it

TWO QUBITS




QUBIT REGISTERS




Bringing qubits together

d
e Two-qubit Hilbert space . # = ®G:2

e Basis states:

0) ®... 0= |0) =|0...00) =10...01)
0) ... |1) =|0...10) =10...11)
11)®...900)x®|1)=|1...10) =[1...11)

e States are no | r representable b

e Evolutions:

I®...® ® [




Bringing qubits together

d
« Two-qubit Hilbert space  # = Q) C*

e Basis states:

0)®...® ®10) =10...00) 0)®...9|0)®|1)=10...01)
0)®...® ®|1)=10...10) 0)®...9|1)®|1)=10...11)
1N®...® ®|1)=|1...10) I®...9|1)®|1)=[1...11)

e States are no | r representable by Bloch spheres!

e Evolutions:

d
1 29—-1

I®... ® 1 H®0y%? = H®%)00...0) = — Y | /o)
V24 Jgo




Bringing qubits together

d
e Two-qubit Hilbert space . # = ®G:2

e Basis states:

0)®...0O)® |0) =0...00) =10...01)
0)®...000)x®|1) =|0...10) =10...11)
11)®...90x®|1)=|1...10) =[1...11)

e States are no | r representable b

e Observables:

I®...® ® 1




What we know so far

« State is the most complete description we have of the quantum system
e It is more complex than a classical state

 State changes are reversible, described by unitaries

e Measurements give random results and “collapse” the state

« We cannot get all the information from the state by measuring it

e The state of two qubits is more than just the product of the qubits’ states

The density matrices
together give less
ENTANGLEMENT information than that of the
o joint (pure) state — where is
the rest of the information?

paradox and non-locality




