

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Univerzita Komenského v Bratislave

Superconducting Parametric Amplifiers

S. Kern¹, P. Neilinger^{1,2}, E. Il'ichev³, A. Sultanov⁴, M. Schmelz³, S. Linzen³, J. Kunert³, G. Oelsner³,

R. Stolz³, A. Danilov⁵, S. Mahashabde⁵, A. Jayaraman⁵, V. Antonov⁶, S. Kubatkin⁵, and M. Grajcar^{1,2}

¹Department of Experimental Physics, Comenius University, SK-84248 Bratislava, Slovakia ²Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta, Bratislava, Slovakia ³Leibniz Institute of Photonic Technology, D-07702 Jena, Germany ⁴Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland ⁵Department of Microtechnology and Nanoscience MC2, Chalmers University of Technology, SE-41296 Goteborg, Sweden ⁶Physics Department, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom

Experimental requirements for QC

- Circuit QED qubit state probed by microwave signal R,T
- Qubit energy $\Delta/h \sim 6 \text{ GHz} = 300 \text{ mK}$, for high coherence $hf >> k_b T \longrightarrow T < 50 \text{ mK}$
- High-Fidelity Readout $n_{cav} \le 10$ (~ expected photons over time 1/BW in the amp.)

Room temperature electronics

- Amplifier, T_N equivalent noise temperature white noise of R=50 Ω ; $N_{out}=G^*(N_{in}+k_bT_N)$
- High signal to noise ratio /low noise temperature is critical! Cryogenic amplifier.

Cryogenic HEMT amplifiers

• Advantages: Broadband, high gain, flat gain profile, reliable, easy to use, high dynamic range, provide isolation, commercially available

RF Bandwidth	4-8 GHz
Noise Temperature	1.5-2 K
Gain	42 dB
Power dissipation	10 mW

https://lownoisefactory.com/product/Inf-Inc4_8c/

 Disadvantages: Minimum operation temperature 3-4K, high dissipation ~10mW, noise temperature 2 K → n_{HEMT} ~ 10 photons

Parametric amplification

- Driven oscillator with a modulated system parameter energy transfer between modes
 - Child on a swing resonance frequency ω_0 modulated (pumped) at $2\omega_0$
- LC resonator with variable inductance nonlinear inductance

• 4 wave mixing – photon model: $\omega_p + \omega_p = \omega_s + \omega_i$

ω

 $L_0 + \delta L\cos(2\pi f_P t + \phi_P)$

Superconducting parametric amplifiers

- Nonlinearity nonlinear inductance
 - Josephson Junctions and SQUIDs

$$L(I) = \frac{\Phi_0}{2\pi I_0 \sqrt{1 - (I/I_0)^2}}$$

• Disordered superconductors - High kinetic inductance

E. A. Tholén et al 2009 Phys. Scr. 2009 014019

Parametric amplification by coupled flux qubits

M. Rehák, ^{1,2} P. Neilinger, ^{1,2} M. Grajcar, ^{1,2} G. Oelsner, ³ U. Hübner, ³ E. Il'ichev, ^{3,4} and H.-G. Meyer³ ¹Department of Experimental Physics, Comenius University, SK-84248 Bratislava, Slovakia ²Institute of Physics, Slovak Academy of Science, 845 11 Bratislava, Slovakia ³Leibniz Institute of Photonic Technology, P.O. Box 100239, D-07702 Jena, Germany ⁴Novosibirsk State Technical University, 20 K. Marx Ave., 630092 Novosibirsk, Russia

Experimental set-up for QM with ParAmps

- ³He/⁴He dilution refrigerator
- Paramps work at 20 mK
- Superconducting ParAmps have no dissipative elements
- Quantum limited amplifier
 - Added-noise number number $n_N^{SQL} = 1/2$
- Advantages: High gain, ultra-low noise, low power dissipation
- Superconducting ParAmps are an **enabling** technology for superconducting qubit measurement

Superconducting parametric amplifiers

Resonant parametric amplifiers

Duffing oscillator ٠

+ SQL noise and below (squeezing), high gain - Limited bandwidth ~ 1 MHz

- Broadband amplifiers traveling wave parametric amplifiers **TWPAs**
- Long nonlinear waveguide, array of JJs \rightarrow Wave-mixing

J. Aumentado, IEEE Microwave Magazine 21(8):45-59 (2020)

B. H. Eom et al., , Nature Physics 8, 623–627 (2012) + Broadband - several GHz - Gain ripples, demanding fabrication, higher noise

Coupled mode theory

• Current in waveguide

$$I(x,t) = \sum_{j}^{\{p,s,i\}} \frac{1}{2} \Big(I_j(x) e^{i(k_j x - \omega_j t)} + c.c. \Big)$$

• Telegrapher's equation for nonlinear medium

$$\begin{split} \frac{\partial^2 I(z,t)}{\partial z^2} - L_l C_l \frac{\partial^2 I(z,t)}{\partial t^2} &= \frac{L_l C_l}{6I_c^2} \frac{\partial^2 I(z,t)^3}{\partial t^2} \\ \dots \\ \end{split}$$
Gain: $g = \sqrt{k_s k_i \gamma^2 - \frac{\beta^2}{4}}$
Phase mismatch: $\beta = \Delta k(1+2\gamma) - 2k_p \gamma$
 $\Delta k = 2k_p - k_s - k_i$
Nonlinearity strength: $\gamma = \frac{|t_p I_p|^2}{16I_c^2}$

Coupled mode theory vs experiment

• 80 cm nonlinear waveguide, Impedance Z=200 Ω

- Phase matched high gain
- Strong ripples limits the usability of TWPA
- Coupled mode theory fail to explain the ripples

Coupled mode theory with reflections

• Current in finite waveguide with unmatched impedance

$$I(x,t) = \sum_{j}^{\{p,s,i\}} \frac{1}{2} \Big(I_j(x) t_j (e^{ik_j x} + \Gamma e^{-ik_j x}) e^{-i\omega t} + c.c. \Big)$$

$$\frac{\partial^2 I(z,t)}{\partial z^2} - L_l C_l \frac{\partial^2 I(z,t)}{\partial t^2} = \frac{L_l C_l}{6I_c^2} \frac{\partial^2 I(z,t)^3}{\partial t^2}$$

Gain:
$$g = \sqrt{k_s k_i \gamma^2 (1 + 4 |\Gamma|^2) - \frac{\beta}{4}}$$

Phase mismatch:

$$\beta = \Delta k (1 + 2\gamma (1 + \Gamma^2)) - 2k_p \gamma (1 - \Gamma^2)$$

Nonlinearity strength: $\gamma = \frac{|t_p I_p|^2}{16I_c^2}$

S. Kern, et al. arXiv:2203.02448 (2022)

Nb JJ TWPA - experiment

• Array of 2000 JJ in coplanar waveguide, I=11mm, v_{ph} = 0.14c, tested at T = 3.5K

Conclusion

- Modified CM theory
 - unmatched TWPA with finite length
- Proper understanding of gain ripples and amplifier bandwidth
- Can be utilized in TWPA design
- The transition regime between traveling-wave and resonant parametric amplifier
- Gain 10dB at 11 mm length without phase matching BW~ 100MHz, – tunable design

Thank you for your attention!

S. Kern, et al. arXiv:2203.02448 (2022)

