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Motto

Michelangelo Buonarotti:
There is no greater loss than time which has been wasted



One real life problem

A producent

has cca 9000 customers;
every day has to realise approximately 900 orders;
has 15 lorries of various capacity.



One real life problem

A producent

has cca 9000 customers;
every day has to realise approximately 900 orders;
has 15 lorries of various capacity.

Every duty of its dispatcher:
To find such a schedule that allows to satisfy all orders, respect
all restrictions of customers and minimalise the transport costs.
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The vehicle routing problem (VRP) is a combinatorial opti-
mization and integer programming problem seeking to service
a number of customers with a fleet of vehicles..
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VRP - Vehicle Routing Problem

The vehicle routing problem (VRP) is a combinatorial opti-
mization and integer programming problem seeking to service
a number of customers with a fleet of vehicles..

A special case of VRP is Travelling salesman problem (TSP).
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Given a list of cities and their pairwise distances, the task is to
find the shortest possible route that visits each city exactly once
and returns to the origin city.
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Travelling salesman problem

Given a list of cities and their pairwise distances, the task is to
find the shortest possible route that visits each city exactly once
and returns to the origin city.

Problem: the number of branches can tend to n!
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Unfortunately, until now we know just exponential time algo-
rithms.
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What is the behaviour of factorial function

5! = 120 70! = 1,19.10100 1000! = 4,02.102567

Moor’s law
is a rule of thumb in the
history of computing HW
whereby the number of
transistors that can be
placed inexpensively on an
integrated circuit doubles
approximately every two
years.
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How many instructions can computer perform
during one human life

1 life ≈ 102 years

1 life ≈ 105 days

1 life ≈ 107 hours

1 life ≈ 109 minutes

1 life ≈ 1011 seconds

1 life ≈ 1022 instructions

1000 orders

1000! ≈ 4,02.102567

branches of a computation



Classical computers does not provide a solution

Classical processor will shortly reach the natural physical lim-
its. (Although some other perspectives provides nanotechnol-
ogy .)

For hard problems even distributed computing (e.g. grids, . . . )
provides acceleration of very limited importance.



Quantum computing

Quantum computers provides an enormous power of paral-
lelism.



Why quantum computing

Why consider quantum computing at all?
Can quantum computers do what classical ones cannot?
Where lie the difference between the classical and
quantum information processing?
Can quantum computers solve some practically important
problems much more effectively?
Where does the power of quantum computing come from?



Why quantum computing

Where are the drawbacks and bottlenecks of quantum
computing?
How feasible are (powerful) quantum computers and really
important quantum information processing applications?
Are not current computers quantum?
Can quantum computers eventually replace classical
ones?



Why it is quantum computation interesting for me

Interdisciplinarity

Computer Science
Mathematics
Physics

Interdisciplinarity within Mathematics

Mathematical Analysis
Computational Complexity
Linear Algebra
Number Theory
Geometry



Quantum Computation

Different areas related to Quantum computations

Hardware for Quantum Computers
. . .
Quantum Algorithms



Gedanken experiment?

Gedanken experiment

A thought experiment (from the German term
Gedankenexperiment) - in the broadest sense is the use of a
hypothetical scenario to help us understand the way things
actually are.

There are many different kinds of thought experiments. All
thought experiments, however, employ a methodology that is a
priori, rather than empirical, in that they do not proceed by
observation or physical experiment.

Thought experiments have been used in a variety of fields,
including philosophy, law, physics, and mathematics. In physics
and other sciences, notable thought experiments date from the
19th, and especially the 20th Century, but examples can be
found at least as early as Galileo.



IBM Q changes the situation



Computation on IBM Q



Quantum computer

A quantum computer is any device for computation that makes
direct use of distinctively quantum mechanical phenomena,
such as superposition and entanglement, to perform operations
on data.

The basic principle of quantum computation is that the
quantum properties can be used to represent and structure
data
quantum mechanisms can be devised and built to perform
operations with this data.



Qubit

Quantum information is physical information that is held in the
state of a quantum system.

The most popular unit of quantum information is the qubit, a
two-state quantum system.
However, unlike classical digital states (which are discrete), a
two-state quantum system can actually be in a superposition of
the two states at any given time.



Qubit implementation

An example of an implementation of qubits for a quantum
computer could start with the use of particles with two spin
states:

|↑〉 and |↓〉 .

Qubit

But in fact any system possessing an observable quantity A
which

is conserved under time evolution
has at least two discrete and sufficiently spaced
consecutive eigenvalues,

is a suitable candidate for implementing a qubit, because any
such system can be mapped onto an effective spin ±1

2 .



Quantum information processing

Quantum information differs from classical information in
several respects, among which we note the following:

It cannot be read without the state becoming the measured
value.
An arbitrary state cannot be cloned.
The state may be in a superposition of basis values.

However, despite this, the amount of information that can be
retrieved in a single qubit is equal to one bit.
The ability to manipulate quantum information enables us to
perform tasks that would be unachievable in a classical context:

unconditionally secure transmission of information
efficient computation for some complex problems



Quantum Measurement

Quantum state of a system

is a mathematical object that fully describes the quantum
system.

Once the quantum state has been prepared, some aspect of it
is measured (for example, its position or energy). The expected
result of the measurement is in general described not by a
single number, but by a probability distribution. The
measurement process is often said to be random and
indeterministic.

Another important aspect of measurement is wavefunction
collapse.



Quantum Measurement Postulate

It is a postulate of quantum mechanics that all measurements
have an associated operator (called an observable operator, or
just an observable), with the following properties:

the observable is a Hermitian (self-adjoint) operator
mapping a Hilbert space into itself
the observable’s eigenvalues are real and the possible
outcomes of the measurement are precisely the
eigenvalues of the given observable
for each eigenvalue there are one or more corresponding
eigenvectors, which will make up the state of the system
after the measurement
the observable has a set of eigenvectors which span the
state space - it follows that each observable generates an
orthonormal basis of eigenvectors (physically, this is the
statement that any quantum state can always be
represented as a superposition of the eigenstates of an
observable).



Classical vs. Quantum Computation

States

ordinary computer

� � · · · � bits
x1 x2 . . . xn where xj ∈ B

quantum computer

� � · · · � qubits
basis: |x1, x2, . . . , xn〉
where

∑
x∈Bn cx |x〉 and∑

x∈Bn |cx |2 = 1

Transformations

ordinary computer

Transformations are
functions from Bn to Bn.

quantum computer

Transformations are
unitary operators, i.e.
operators that preserve the
length

∑
x∈Bn |cx |2 of each

vector
∑

x∈Bn cx |x〉.



Inner-product space

Definition

An inner-product space H is a complex , equipped with an inner
product 〈·|·〉 : H × H −→ C satisfying the following axioms for
any vectors φ, ψ, φ1, φ2 ∈ H, an any c1, c2 ∈ C:

〈φ|ψ〉 = 〈ψ|φ〉∗;
〈φ|φ〉 ≥ 0 and 〈φ|φ〉 = 0 if and only if φ = 0;
〈ψ|c1φ1 + c2φ2〉 = c1〈ψ|φ1〉+ c2〈ψ|φ2〉.

The inner product introduces on H the norm ||ψ|| =
√
〈ψ|ψ〉

and the metric (Euclidean distance) dist(φ, ψ) = ||φ− ψ||.



Hilbert space

Definition

An inner-product space H is called complete, if for any
sequence {φi}∞i=1 with φi ∈ H, and with the property that
limi,j→∞ ||φ− φi || = 0, there is a unique element φ ∈ H such
that limi→∞ ||φ− φi || = 0. A complete inner-product space is
called a Hilbert space.

Definition

A linear operator on a Hilbert space H is a linear mapping
A : H −→ H.



Dual Hilbert Space

For each φ ∈ H the mapping fφ : H −→ C defined by
fφ(ψ) = 〈φ|ψ〉 is a linear mapping on H.

Theorem

To each continuous linear mapping f : H −→ C there exist a
unique φf ∈ H such that f (ψ) = 〈φf |ψ〉 for any ψ ∈ H.

The space of linear mapping (called also functionals) of a
Hilbert space H forms again a Hilbert space, called dual Hilbert
space or conjugate Hilbert space.
A vector φ of a Hilbert space is denoted |φ〉 and referred as a
ket-vector. The corresponding functional is denoted 〈ψ| and
referred as a bra-vector.



Unitary operators

Unitary matrix

is an n by n complex matrix U satisfying the condition

UU+ = In,

where In is the identity matrix and U+ is the conjugate
transpose (also called the Hermitian adjoint) of U.

Note that a matrix U is unitary if and only if it has an inverse
which is equal to its conjugate transpose U+.

Important feature

Unitary matrix preserves inner-products, i.e. 〈Ux |Uy〉 = 〈x |y〉.



Properties of unitary operators

Rather simple premises imply that there exists unitary
mappings

U(t) : Hn → Hn

which govern the time evolution in the following way: if

ψ(0) = c0 |0〉+ c1 |1〉+ · · ·+ cn−1 |n − 1〉

is the state of the system at time t = 0, then the state at time t
is given by

ψ(t) = U(t)ψ(0).



Properties of unitary operators

Moreover, the unitary mappings U(t) satisfy

U(t1 + t2) = U(t1)U(t2)

. If we further assume that the mapping U(t) is continuous, it
follows that there exists a self-adjoint mapping H : Hn → Hn
such that

U(t) = eitH .

Such a mapping H is called the Hamiltonian operator of the
system and is of course determined by the physical conditions.
A componentwise differentiation of the last equality implies that

i
d
dt
ψ(t) = Hψ(t).

This equation is called Schrődinger’s equation of motion.



One qubit register

For one qubit register we have two possible states represented
by the vectors:

|↑〉 = |0〉 =
(

1
0

)
|↓〉 = |1〉 =

(
0
1

)
.

Very often we need also so-called dual (or Fourier) base:

∣∣0′〉 = ( 1√
2

1√
2

) ∣∣1′〉 = ( 1√
2

− 1√
2

)



Hadamard transformation

Hadammard transformation is a unitary transformation that
transform the standard base to the dual base. It is represented
by the matrix

H1 =
1√
2

(
1 1
1 -1

)
.

By an application of the Hadammard operator we have∣∣0′〉 = H1 |0〉 =
1√
2
(|0〉+ |1〉)

∣∣1′〉 = H1 |1〉 =
1√
2
(|0〉 − |1〉)



Two qubit register

For two qubit register we have four possible states represented
by the vectors:

|00〉 = |0〉 ⊗ |0〉 =
(

1
0

)
⊗
(

1
0

)
=


1
0
0
0


and

|01〉 =


0
1
0
0

 , |10〉 =


0
0
1
0

 , |11〉 =


0
0
0
1

 .



n-dimensional Hadammard Transformation

n-dimensional Hadammard transformation has form

Hn = ⊗n
i=1H1

and an application of Hn to the n-dimensional state |0(n)〉 yields

Hn |00 . . . 0〉︸ ︷︷ ︸
n

= Hn

∣∣∣0(n)
〉
=
∣∣∣0′(n)〉 =

∣∣0′0′ . . . 0′〉︸ ︷︷ ︸
n

,

where ∣∣∣0′(n)〉 =
1√
2n

n∑
i=1

|i〉 .



Quantum parallelism

An application of an operator A to a state

|φ〉 =
2n−1∑
i=0

ci |i〉

yield to

A|φ〉 =
2n−1∑
i=0

ciA|i〉,

i.e. by a single application of the operator A (on a “single
processor”), exponentially many operations on basis states are
performed. This phenomenon is called quantum parallelism.



Quantum gates

A quantum gate or quantum logic gate is a basic quantum
circuit operating on a small number of qubits.

They are the analogues for quantum computers to classical
logic gates for conventional digital computers. Quantum logic
gates are reversible, unlike many classical logic gates.

A set of universal quantum gates is any set of gates to which
any operation possible on a quantum computer can be
reduced, that is, any other unitary operation can be expressed
as a finite sequence of gates from the set.

Some universal classical logic gates, such as the Toffoli gate,
provide reversibility and can be directly mapped onto quantum
logic gates. Quantum logic gates are represented by unitary
matrices.



f-controlled NOT

Proposition

Given a function f : {0,1, . . . ,2m − 1} −→ {0,1, . . . ,2n − 1}.
There exists a unitary transformation Uf such that

|φ〉 = 1√
2m

2m−1∑
i=0

|x ,0〉 Uf→ 1√
2m

2m−1∑
i=0

|x , f (x)〉.



Amplitude sign changing operator

Given a function f : {0,1, . . . ,2N − 1} −→ {0,1}.

Using Uf we can construct a mapping Vf operating as
Vf |x〉 = (−1)f (x) |x〉.

This operator is called sign-changing operator.



Inversion about the average Dn

It acts in the following way:

Dn :
2n−1∑
i=0

ai |xi〉 →
2n−1∑
i=0

(2E − ai) |xi〉 ,

where E is the average of the values {ai : i = 0,1, . . . ,2n − 1}.
The corresponding matrix has form:

−1 + 2
2n

2
2n · · · 2

2n
2
2n −1 + 2

2n · · · 2
2n

...
...

. . .
...

2
2n

2
2n · · · −1 + 2

2n

 ,



How inversion about the average Dn acts



The composed operator Dn.Vf

Since Vf is diagonal matrix with diagonal (−1,1, . . . ,1︸ ︷︷ ︸
2n−1

), the

operator Dn.Vf has the form:
1− 1

2n−1
1

2n−1
1

2n−1 · · · 1
2n−1

− 1
2n−1

1
2n−1 − 1 1

2n−1 · · · 1
2n−1

...
...

...
. . .

...
− 1

2n−1
1

2n−1
1

2n−1 · · · 1
2n−1 − 1

 .



Deutsch’s problem

Informally, we want to guess whether a give coin is genuine
(with head on one side and tail on the other) of fake (with both
sides the same). The question is how many times we need to
look at the coin to find out which case it is.

Problem (Deutsch’s XOR problem)

Given a function f : {0,1} −→ {0,1}, as a black box, the task is
to determine whether f (0)⊕ f (1) = 0, or 1 (i.e. whether f is
constant or balanced).



Randomized algorithm

Algorithm (original randomized solution)

Let Wf be the unitary mapping of |x , y〉 into |x , y ⊕ f (x)〉 -
so-called f -controlled NOT. One application of Wf to the state

1√
2
(|0〉+ |1〉)|0〉 yields to the state 1√

2
(|0, f (0)〉+ |1, f (1)〉), which

can be written in the standard and dual basis as follows: if f is
constant 1√

2
(|0, f (0)〉+ |1, f (1)〉) = 1√

2
(|0′,0′〉+ (−1)f (0)|0′,1′〉)

and if f is balanced:
1√
2
(|0, f (0)〉+ |1, f (1)〉) = 1√

2
(|0′,0′〉+ (−1)f (0)|1′,1′〉).

If the measurement of the second qubit provides 0 we have lost
all information about f . However, if the measurement yields 1,
then the measurement of the first qubit yields the correct result.



Deterministic algorithm

Algorithm (deterministic solution)

1 By an application of H2 to |0〉|1〉 we get
1
2(|0〉+ |1〉)(|0〉 − |1〉) =

1
2(|0〉(|0〉 − |1〉) + |1〉(|0〉 − |1〉).

2 By an application of Uf we obtain
1
2(|0〉(|0⊕ f (0)〉− |1⊕ f (0)〉)+ |1〉(|0⊕ f (1)〉− |1⊕ f (1)〉)) =
1
2

(∑1
x=0(−1)f (x)|x〉

)
(|0〉−|1〉) = (−1)f (0)|(f (0)⊕f (1))′〉|1′〉.

By measuring of the first bit, with respect to the dual basis, we
can immediately see whether f is constant or balanced.



Computation on IBM Q

Figure: Deutsch-Jozsa for f (x) = x0 ⊕ x1x2



Search problem

Problem (Unsorted database search)

Instance: Given a positive integer n and an element x∗

belonging to an unsorted database with 2n elements equipped
with a function f such that f (x) = 1 whenever x = x∗ and
f (x) = 0 in all other cases.
Goal: Find the element x∗.

The time complexity for classical search algorithm is O(2n).



Grover’s algorithm description

Algorithm (Grover’s algorithm)

1 Using Hadamard transformation Hn create the state
|φ〉 = 1√

2n

∑2n−1
x=0 |x〉.

2 Apply the sign-changing operator Vf to |φ〉 to provide
|ψ〉 = 1√

2n

∑2n−1
x=0 (−1)f (x) |x〉.

3 Apply the inversion about average operator Dn to the state
received in the previous step.

4 Iterate dπ4
√

2ne times steps 2 and 3.
5 Measure the x-register to get x0. If f (x0) 6= 1 go to step 1.



The correctness of Grover’s algorithm



Estimation of the number of loops (1)

Let us label the qubits of the register X by xi ,
i = 0,1, . . . ,2n − 1. Without loss of generality we can assume
that the register X is arranged so that the first qubit x0 is equal
to x∗. Due to the properties of the used operators (they act in
the same manner on all qubits xi , i = 1,2, . . . ,2n − 1), one can
quite easily see that in any stage of the computation, the actual
state of the register can be expressed as:

α |x0〉+
2n−1∑
i=1

β |xi〉 ,

where |α|2 +
∑2n−1

i=1 |β|2 = |α|2 + (2n − 1)|β|2 = 1.



Estimation of the number of loops (2)

Since f (x) = 1 if and only if x = x∗ (i.e. i = 0) the
sign-changing operator Vf produces a new state that is equal to

−α |x0〉+
2n−1∑
i=1

β |xi〉 .



Estimation of the number of loops (3)

Let us denote by (αt , βt , . . . , βt︸ ︷︷ ︸
2n−1

) the vector of coefficients after t

iterations, t = 0,1, . . . . The sign-changing operator Vf and the
inversion about average operator Dn transforms the vector of
coefficients (αt , βt , . . . , βt︸ ︷︷ ︸

2n−1

) to the new vector

(αt+1, βt+1, . . . , βt+1︸ ︷︷ ︸
2n−1

) in the following way:


αt+1
βt+1

...
βt+1

 = Dn.Vf


αt
βt
...
βt

 .



Estimation of the number of loops (4)

Since the operator Dn.Vf has the form that was presented in the
previous section, we have the following expressions for
αt+1, βt+1:

αt+1 =

(
1− 1

2n−1

)
αt +

2n − 1
2n−1 βt , (1)

βt+1 = − 1
2n−1αt +

(
1

2n−1 − 1
)
βt +

2n − 2
2n−1 βt =

= − 1
2n−1αt +

(
1− 1

2n−1

)
βt . (2)



Estimation of the number of loops (5)

Since

α2
t + (2n − 1)β2

t = 1 (3)

it is convenient to introduce the following substitution:

αt = sinφt βt =
1√

2n − 1
cosφt .



Estimation of the number of loops (6)

Let us try to describe the influence of the operator Dn.Vf on
behaviour of the value of the angle φt . Let us denote the
change of φt by 2δt . Then

αt+1 = sin(φt + 2δt) βt+1 =
1√

2n − 1
cos(φt + 2δt).



Estimation of the number of loops (7)

Using the well know identities
sin(a + b) = sin a cos b + cos a sin b and
cos(a + b) = cos a cos b − sin a sin b we obtain

αt+1 = αt cos 2δt +
√

2n − 1βt sin 2δt , (4)

βt+1 = βt cos 2δt −
1√

2n − 1
αt sin 2δt . (5)



Estimation of the number of loops (8)

By a combination of (4), (5) with (1), (2) we have

αt cos 2δt +
√

2n − 1βt sin 2δt =

(
1− 1

2n−1

)
αt +

2n − 1
2n−1 βt(6)

βt cos 2δt −
1√

2n − 1
αt sin 2δt = − 1

2n−1αt +

(
1− 1

2n−1

)
βt .(7)

If we multiply the equation (6) by αt and the equation (7) by
(2n − 1)βt and we sum the results we get

cos 2δt = 1− 1
2n−1

.



Estimation of the number of loops (9)

Now we utilise (3) and the formula
cos 2a = cos2 a− sin2 a = 1− 2 sin2 a and we obtain

sin2 δt =
1− cos 2δt

2
=

1− 2n−1−1
2n−1

2
=

1
2n .

Hence we see that the value of δt does not depend on the
number of iterations t and it is constant. Since limn→∞

1
2n = 0

and lima→0
sin a

a = 1 we put

δt = δ ≈ 1√
2n
.



Estimation of the number of loops (10)

For t-th iteration, t ≥ 1 we obtain

αt = sin(φ0 + 2δt) βt =
1√

2n − 1
cos(φ0 + 2δt).

But at the beginning of the loop we have the superposition of
the basic states with the coefficient α0 = sinφ0 equal to 1√

2n .
Therefore φ0 = δ and

αt = sin[(2t + 1)δ] βt =
1√

2n − 1
cos[(2t + 1)δ].



Estimation of the number of loops (11)

We remind, that we are looking for the value x0 = x∗ and we
want to obtain a state when αt = sin[(2t + 1)δ] is close to 1 and
βt =

1√
2n−1

cos[(2t + 1)δ] is close to 0. This is true when
(2t + 1)δ = arcsin 1 = π

2 and

t =
1
2

( π
2δ
− 1
)
≈ π

4

√
2n.

Hence, after π
4

√
2n repetitions of the loop described in the

algorithm, the output of the algorithm is almost sure equal to x∗.



The power of Grover’s algorithm

Theorem

Grover’s algorithm is searching an unsorted database with
N = 2n entries in O(N1/2) time and using O(log N) storage
space.

Grover’s algorithm provides quadratic speedup. However,
even quadratic speedup is considerable when N is large.
According to result of C.H. Bennett et al. (Strengths and
weaknesses of quantum computing, SIAM Journal on
Computing 26 1510 – 1523) the obtained result is the best
possible.



Factorisation problem

Problem

Given an integer N. Find an integer p between 1 and N that
divides N.

The algorithm is based on the following facts:
factorisation of integers can be reduced to the problem of
finding the period of a function,
Fourier transform puts the period of any periodic function
into multiples of the reciprocal of the period,
Quantum Fourier Transform can be used to get efficiently
approximations of the period,
the exact period can be extracted from the available
information.



Shor’s algorithm principle (1)

Shor’s algorithm consists of two parts:
A reduction of the factoring problem to the problem of
order-finding, which can be done on a classical computer.
A quantum algorithm to solve the order-finding problem.



Shor’s algorithm principle (2)

In order to illustrate the main ideas of Shor’s algorithm,
consider the quadratic equation

x2 ≡ 1 mod N,

which always has solutions x = ±1 mod N, the so-called trivial
solutions.
If N is an odd prime p, then these are the only solutions (since
multiplication modulo p has inverses and
x2 − 1 = (x2 + 1)(x2 − 1) = 0 mod p implies x + 1 ≡ 0
mod N, or x − 1 ≡ 0 mod p).
However, if N is composite, then there are also pairs of
nontrivial solutions of the form x ≡ ±a mod N for some a.



Shor’s algorithm principle (3)

If we have a nontrivial solution x of the studied equation we can
efficiently find a nontrivial factor of N. We find such an x as
follows.
Given N, choose a random y < N. If y and N are coprime then
let r be the order of y mod N. This is precisely the period of
the function FN(a) = ya mod N. Thus

y r ≡ 1 mod N.

If r is also even, then setting

x = y r/2

we have x2 ≡ 1 mod N, so x is a candidate for our nontrivial
solution of the studied equation.



An illustrion of the main idea of Shor’s algorithm



Shor’s algorithm principle (4)

This provides the connection between the periodicity of FN(a)
and the calculation of a nontrivial factor of N.

Potential problem
The above process may fail if the chosen value y has an odd
order r , or if r is even but y r/2 turns out to be a trivial solution
the equation.

However, it can be proved that such a situation arise only
with suitably small probability if y is chosen at random.



Some useful auxiliary results

Let n = pe1
1 .p

e2
2 . . . pek

k , k ≥ 2.

Lemma

Let φ(pe) = 2uv, where u ≥ 1,2 6 |v and s ≥ 0 a fixed integer.
Then the probability that a randomly (and uniformly) chosen
element a ∈ Z ∗pe has an order of form 2st with 2 6 |t is at most 1

2 .

By a repetitive application of the previous lemma for a
decomposition (a1, . . . ,ak ) ∈ Z∗

pe1
1
× Z∗

pe2
2
× Z∗

p
ek
k

of a

Lemma

The probability that r = ord(a) is odd for a uniformly chosen
a ∈ Z ∗n is at most 1

2k .



Some useful auxiliary results II

Lemma

Let n = pe1
1 · · · p

ek
k be a prime decomposition of an odd n and

k ≥ 2. If r = ordn(a) is even, then the probability that

a
r
2 ≡ −1(mod n)

is at most 1
2k .

Lemma

Let n = pe1
1 · · · p

ek
k be the prime factorisation of an odd n with

k ≥ 2. Then, for a random a ∈ Z ∗n (chosen uniformly), the
probability that r = ordn(a) is even and a

r
2 6≡ −1(mod n) is at

least (1− 1
2k )

2 ≥ 9
16 .



A subroutine for Shor’s algorithm

Algorithm (Period-finding subroutine)

1. Start with a pair of input and output qubit registers with
log2 N qubits each, and initialize them to 1√

N

∑N−1
x=0 |x〉 |0〉.

2. Construct f (x) as a quantum function and apply it to the
above state, to obtain 1√

N

∑N−1
x=0 |f (x)〉 |0〉.

3. Apply the inverse quantum Fourier transform F on the
input register. The inverse quantum Fourier transform on N
points is defined by F |x〉 1√

N

∑N−1
y=0 e−2πixy/N |y〉. It results

in the state

1
N

N−1∑
x=0

N−1∑
y=0

e−2πixy/N |y〉 |f (x)〉 .



A subroutine for Shor’s algorithm

Algorithm (Period-finding subroutine - cont.)

4. Perform a measurement. We obtain some outcome y in
the input register and f (x0) in the output register. Since f is
periodic, the probability of measuring some pair y and
f (x0) is given by∣∣∣∣∣∣ 1

N

N−1∑
x :f (x)=f (x0)

e−2πixy/N

∣∣∣∣∣∣
2

=

∣∣∣∣∣ 1
N

∑
b

e−2πi(x0+rb)y/N

∣∣∣∣∣
2

.

Analysis now shows that this probability is higher, the
closer yr/N is to an integer.

5. Turn y/N into an irreducible fraction, and extract the
denominator r ′, which is a candidate for r .



A subroutine for Shor’s algorithm

Algorithm (Period-finding subroutine - cont.)

6. Check if f (x) = f (x + r ′). If so, we are done.
7. Otherwise, obtain more candidates for r by using values

near y, or multiples of r ′. If any candidate works, we are
done.

8. Otherwise, go back to step 1 of the subroutine.

Theorem

Shor’s algorithm factors a number N in O((log N)3) time and
O(log N) space.



Some useful results II

Lemma

For n ≥ 100 the observation of (∗) will give a p ∈ Zm such that
|pr − dm| ≤ r

2 with a probability of not less than 2
5 .

Theorem

For r ≥ 3,
r

φ(r)
< eγ log log r +

2.50637
log log r

,

where γ = 0,772156649 . . . is the Euler’s constant.

Lemma

For r ≥ 19, the probability that, for a uniformly chosen
d ∈ {0,1, . . . , r − 1} gcd(d , r) = 1 holds, is at least 1

4 log log n .



Shor’s factoring algorithm

Algorithm (Shor’s algorithm)

1 Pick a random number a < N.
2 Compute gcd(a,N). This may be done using the Euclidean

algorithm.
3 If gcd(a,N) 6= 1, then there is a nontrivial factor of N, so we

are done.
4 Otherwise, use the period-finding subroutine to find r , the

period of the function f (x) = ax mod N, i.e. the smallest
integer r for which f (x + r) = f (x).

5 If r is odd, go back to step 1.
6 If a r/2 ≡ −1( mod N), go back to step 1.
7 The factors of N are gcd(a r/2 ± 1,N). We are done.



Summary

We have already the following facts:

The probability that, for a randomly (and uniformly) chosen
a ∈ Zn, the order r of a is even and a

r
2 6≡ −1( mod n) is at

least 9
16 .

The probability that observing (*) will give a p such that
p − d m

r | <
1
2 is at least 2

5 .

The probability that gcd(d , r) = 1 is at least 1
4 log log n .

By a combination of the previous facts we obtain:

Lemma

The probability that the quantum algorithm finds the order of an
element of Zn is at least 9

160
1

log log n .



Maximal Independent Set

Maximal Independent Set Problem: Given a graph G = (V ,E),
compute a maximal independent set in G.

Theorem (S. Dőrn)

The quantum query complexity of the Maximal Independent Set
algorithm is O(n1.5) in the adjacency matrix model and
O(
√

nm) in the adjacency list model.



Maximum Independent Set

Maximum Independent Set Problem: Given a graph
G = (V ,E), compute an independent set V ′ ⊆ V such that
|V ′| = α(G).

Theorem (S. Dőrn)

The expected quantum time complexity of the Maximum
Independent Set algorithm is O(2n/5) = O(1.1488n).



Graph Colouring

Vertex Colouring Problem: Given a graph G = (V ,E), compute
a vertex coloring of G with k colours.

Strategy
1 determine a maximal independent set W of the graph G
2 assign all vertices of W with color i (at the beginning i = 1).
3 delete all the vertices of W from G and increase i ; repeat

this procedure as long as there are vertices in G.

Theorem (S. Dőrn)

The quantum time complexity of the vertex-coloring algorithm is
O(kn1.5log2n) in the adjacency matrix model and
O(kp

√
nm log2n) in the adjacency list model.



Quantum cryptography principles

Quantum cryptography, or quantum key distribution, uses
quantum mechanics to guarantee secure communication. It
enables two parties to produce a shared random bit string
known only to them, which can be used as a key to encrypt and
decrypt messages.

An important and unique property of quantum cryptography is
the ability of the two communicating users to detect the
presence of any third party trying to gain knowledge of the key.

The security of quantum cryptography relies on the foundations
of quantum mechanics, in contrast to traditional public key
cryptography which relies on the computational difficulty of
certain mathematical functions, and cannot provide any
indication of eavesdropping or guarantee of key security.
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