


Errors
To construct a genuine “logical qubit” on which computation 
with error correction can be performed, you need many 
physical qubits.

How many? 

Alán Aspuru-Guzik of Harvard University estimates that 
around 10,000. If the qubits get much better, he said, this 
number could come down to a few thousand or even 
hundreds.

Jens Eisert of the Free University of Berlin is less pessimistic, 
saying that on the order of 800 physical qubits might already 
be enough.

Gil Kalai of the Hebrew University of Jerusalem in Israel: I 
think that the effort required to obtain a low enough error 
level for any implementation of universal quantum circuits 
increases exponentially with the number of qubits, and thus, 
quantum computers are not possible.



Three little pigs build houses quantum computers
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Quantum theory replaced dualistic view with a unified one

A “quarticle” cannot be associated with a
definite location in space. Instead, the possible
results of measuring its position are given by a
probability distribution. And that distribution is
given as the square of a space-filling field, its
so-called wave function.



For collections of identical quarticles, a new dualism appears.

Enrico FermiSatyendra Bose

quantum statistics



Quantum statistics reflects the topology of quarticle trajectories:

Probability for a process is the square of the amplitude of its wave function.

Path integral – a functional integral over an
infinity of quantum-mechanically possible
trajectories allows one to compute a quantum
amplitude for a quarticle moving from point A at
some time t0 to point B at some other time t1.



In calculating the total amplitude for two indistinguishable quarticles that begin at positions A
and B and end at positions C and D, we must take into account contributions from every possible
motion connecting the starting positions to the end points.

Two classes of trajectories – same result (quarticles are indistinguishable), different topology!*

*

Quantum statistics reflects the topology of quarticle trajectories:



There are two mathematically consistent possibilities, to combine the contributions 
from those two classes. We can add them, or we can subtract them.

Quantum statistics reflects the topology of quarticle trajectories:

The + option gives us bosons, while the - option gives us fermions. All the characteristic 
properties of bosons and fermions can be deduced from those basic rules. 

Indistinguishability and the topology of motion in space-time determines these basic 
properties of matter .



=

Knot or not?

In 4D all knots can be unraveled completely!



≠

Knot or not?

2D space = 3D spacetime

Frank Wilczek

Richer topology ⇒more possibilities for quantum statistics ⇒more than just 
bosons and fermions ⇒ ANYONS with memory! 
Value of the amplitude provides a record of their relative motion in spacetime.



Anyons

*e.g. fractional quantum Hall effect – Abelian anyons

If two anyons are exchanged counterclockwise, 
the wavefunction can change by an arbitrary phase:

ψ(r1, r2) → eiθψ(r1, r2)
(Bosons: θ = 0, Fermions: θ = π)

A second counter-clockwise exchange need not lead back 
to the initial state but can result in a non-trivial phase:

ψ(r1, r2) → e2iθψ(r1, r2) Non-Abelian: σ2σ1 ≠ σ1σ2

If anyons are non-Abelian*, braiding will cause non-trivial rotations within the Hilbert 
space. Systems of many non-Abelian anyons build up a gigantic collective memory, which 
can serve as a platform for topological quantum computing.

Braiding



Anyons

Non-Abelian: σ2σ1 ≠ σ1σ2

Braiding

Protected from:

• decoherence, because they are non-local 
quasiparticles. Their subspace of 
degenerate ground states, used for 
computation, is separated from the rest of 
the spectrum by an energy gap.

• unitary errors, since the unitary 
transformations associated with braiding 
quasiparticles are sensitive only to the 
topology of the quasiparticle trajectories, 
and not to their geometry or dynamics.



Braiding

Computing with anyons exploits their ability to map their knotted histories into quantum-
mechanical amplitudes. Topological quantum computing is therefore a modernization of 
quipu, the Incan technology for computation and encryption with knots.





Building Majorana bound states

We are looking for Majorana excitations which are their own antiparticle, i.e., whose creation and annihilation operators satisfy

Such an operator, which consists in equal parts of electrons and holes, is e.g.:

BCS superconductors have fermionic quasiparticle excitations described by linear combinations of creation and 
annihilation operators:

The prefactors in this linear combination depend on the energy of the (Bogoliubov) quasiparticle excitation. An excitation far 
above the superconducting gap will behave like an electron and thus u = 1 and v = 0. Far below the superconducting gap will 
look like a hole; u = 0 and v = 1. A Majorana excitation has equal amplitudes of c and c†, i.e., we are looking for a midgap
excitation with u = v.



Building Majorana bound states

But in BCS, we have spins!!!

Thus, we should be looking for Majoranas as zero-energy excitations in superconductors made of spinless fermions. Because 
of the Pauli principle, the Cooper pair wavefunction must be antisymmetric. For spinless fermions, there is no spin part of the 
Cooper pair wavefunction and the antisymmetry must be in the orbital part. Hence we seek zero-energy excitations in spinless
p-wave superconductors!

Experimentally accessible systems must have
• proximity coupling to a conventional s-wave superconductor
• spin polarization
• spin-orbit coupling 



Building Majorana bound states
E.g. we can put a one-dimensional spin polarized system in proximity to a superconductor with spin-orbit coupling. This one has 
a small p-wave admixture to the s-wave pairing. Unlike the s-wave correlations, the p-wave correlations can transfer to the 
spin-polarized system.

Chains of magnetic adatoms on superconductors



Scanning Tunneling Microscopy
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Tunneling spectroscopy



Nanomanipulation

CO oc Cu(111)



The Fe atoms were placed at a binding site on a Cu2N surface, for which Fe has a 

large magnetic anisotropy field that aligns its spin to the resulting easy axis D.

Néel states are stable at voltage < 2 mV (current 1 pA).

Spin polarized STM



Yu-Shiba-Rusinov states

Classical magnetic impurities in a superconductor 
Classical impurity approximation: the impurity behaves as a local magnetic field



Yu-Shiba-Rusinov states



Yu-Shiba-Rusinov states

The number of Shiba peaks depends on the 
atom nature:

𝑀𝑛→𝑙=0,1
𝐶𝑟→𝑙=0,1,2

Every peak corresponds to a different diffusion 
channel for the superconducting electrons.
Extremely local effect of the impurities (a few Å)

Shuai-Hua Ji et al. PRL100, 226801 (2008) 



Yu-Shiba-Rusinov states



Yu-Shiba-Rusinov states

G. Ménard et al. arXiv:1506.06666, Nature Physics(2015)

Electron- and hole-like excitations restore symmetry away 

from impurity. Good agreement with theoretical calculations 

for 2D case in the asymptotic limit.



Yu-Shiba-Rusinov states

Hatter et al. , Nature Communications 2015

MnPc adsorption and magnetic fingerprint on Pb(111).



Yu-Shiba-Rusinov states

Formation of coupled YSR states on CoPc dimers on NbSe2.

S. Kezilebieke et al. arXiv:1701.03288



Yu-Shiba-Rusinov states

ZBC 500 mK 0 mT



Yu-Shiba-Rusinov states

J. L. Lado et al. , 2D Materials 2016

Calculations for hydrogenated graphene in proximity to a superconductor show that individual adatoms induce in-gap Yu-Shiba-
Rusinov states with an exotic spectrum whereas chains of adatoms result in a gapless Yu-Shiba-Rusinov band.



Yu-Shiba-Rusinov states

Array of magnetic impurities on an s-wave superconductor form a 2D Shiba lattice -
system with high Chern numbers – large variety of topological orders.

J. Röntynen et al., PRL 2015



Chain of magnetic adatoms – different hopping strengths

Weak hopping between 
Anderson-impurity states 
which are symmetric 
about the Fermi energy.
No electronic degrees of 
freedom

Weak hopping between 
generic Anderson-impurity 
states which are asymmetric 
about the Fermi energy.

Strong hopping between 
Anderson impurity states.

Prone to develop topological superconductivity 
in the presence of spin-orbit coupling in the 
superconductor.

Very strong hopping 
between Anderson 
impurity states.

The formation of Majorana bound states 
depends on the physics of the Shiba bands.



Fe chain on Pb(110)

S. Nadj-Perge et al., Science 2014
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Fe chain on Pb(110)

B. E. Feldman et al., Nature Physics 2017



Fe chain on Pb(110) – SC TIP

B. E. Feldman et al., Nature Physics 2017



Fe chain on & under Pb

B. E. Feldman et al., Nature Physics 2017



Fe chain on Pb(110)

S. Jeon et al., Science 2017



Fe chain on Pb(110)

S. Jeon et al., Science 2017



(LaSe)1.14(NbSe2)…Ising?

Upper critical magnetic field parallel to the basal planes 

(ab) exceeding by an order the Pauli limiting field 

together with Bc2 in the c-direction. The inset shows the 

superconducting anisotropy indicating the 3D-2D 

crossover at 1.1 K

. Right: Angular dependence of Bc2 in 

agreement with the Tinkham model for 2D 

superconductor 



Bad news:

• Transformations realized by braiding of Majorana modes in 2D, while 
enjoying topological protection, cannot provide all three elementary 
gates required for a universal gate set.

• It is impossible to construct a universal topological quantum 
computer based on braiding Majorana bound states.

Two possible workarounds:
• complement braiding by unprotected gate operations – tedious but feasible
• Fibonacci anyons with a richer braid group and the capacity to realize a 

universal topological quantum computer - SCIFI


