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 Quantum bits, quantum gates, Bloch sphere,
decoherence

 Magnetic resonance as a tool for quantum computing

 Mononuclear magnetic molecules & spin clusters as
qubits

 Soliton qubits

 Quantum entanglement in low-dimensional magnets
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 qubit – two-state quantum object, can be in the state of
superposition

 for probability of states



Quantum bits
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Important requirements (DiVicenzo criteria)

 Well-defined objects

 Addressability, possibility to create exact spatial structures of qubits

 Initialization of qubit, defined initial state

 polarizer

 Long enough quantum coherence time in comparison with quantum gate
operation time = qubit figure of merit

 decoherence, Rabi oscillations

 Universal set of quantum gates (minimálna úplná množina log. hradiel)

 gates NOT a CNOT

 Possibility to measure resulting state

 Result of quantum computation



Quantum bits = spins
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Important requirements (DiVicenzo criteria)

 Well-defined objects

 Electron or nuclear spin, etc.

 Initialization of qubit, defined starting state

 Static magnetic field, electric field

 Long enough quantum coherence time in comparison with quantum gate
operation time = qubit figure of merit

 Experimentally observed on el. spins < 1 ms at liquid nitrogen temperatures

 Universal set of quantum gates (minimálna úplná množina log. hradiel)

 Short pulse of magnetic field or series of timed pulses

 Possibility to measure resulting state

 Detection coil, spin-polarized STM



Quantum bits = electron spins
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 Definition of qubit – electron spin !

 magnetic defects (NV center in diamond), molecules
with 3d or 4f ion, spin cluster with well defined
ground state with S=1/2

 topological objects with well defined quantum states
– solitons in one-dimensional magnets

 Preparation of initial qubit state – static
magnetic field selects one state, e.g.
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 We can perform arbitrary unitary transformation

 Later we show how to perform it on spin

 Set of simple qubit logic gates



Quantum gate
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 We can perform arbitrary unitary transformation

Fairicorn qubit
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 Universal set of quantum gates (minimálna úplná množina) allows
to perform all possible logic operations – e.g. NOT and CNOT

 NOT – one-qubit gate - spin-flip – preklopenie spinu

 CNOT (controlled-NOT or XOR) – two-qubit gate – requires the

possibility to switch off and on interaction between qubits, changing first
qubit state using quantum entanglement we change the second qubit state,
but only if control qubit is
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 Bloch sphere – description of qubit state using a vector, vector
defines a point on Bloch sphere, description of quantum gates

Using polar coordinates



Bloch sphere
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 Density matrix – defined using propability pi that qubit is in pure
state , 2-by-2 matrix for 2-state system

 Components of Bloch vector (x,y,z) define the state of qubit

Pauli matrices

e.g. vector (0,0,1) represents pure state
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 The loss of quantum information due to the interaction of qubit
with environment, even with other qubits

 population relaxation time T1 – lifetime of
classical bit, result of the energy exchange with
environment, e.g. lattice, after quantum gate
operation the spin returns to equilibrium initial
state (spin-lattice relaxation time),
 this is upper limit for T2

 phase memory time T2 – lifetime of quantum bit
encoded in the phase of quantum state –
interaction with other qubits – mutual interaction
between electron spins or electron-nuclear
(hyperfine) interaction, the measurement itself
leads to decoherence (spin-spin relaxation time)



Decoherence
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 Qubit figure of merit – ratio of quantum coherence time (period when
quantum information is preserved) and quantum gate operation time
– needs to be in order of 104

 Technologically obtainable quantum gate operation is about 10-20 ns
 minimum quantum coherence time needs to be 100 μs
(experiments exist!)
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 Ultimate goal is to have spatial arrangement of qubits (single
molecules or spins), manipulate the qubit state, perform
quantum gate, switch on interaction – entangle selected qubits
and read the result of computation from each qubit



Qubit vs. Qubit Ensemble
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 So far we don’t know manipulate single spins and read their state very
well - can we study bulk sample with the aim to find whether the
molecules in the sample are plausible tool for quantum computing?

 for single qubit we can create superposition of states – can we create
an effective pure quantum state in an ensemble of qubits, perform
quantum gate and then obtain the same result as we were working
with single qubit?

 YES !



Qubit vs. Qubit ensemble
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 Possibility to encode some of quantum algorithms in several
different states of one molecule or different spins in molecule –
Shor algorithm for factorization of large numbers using NMR on
different nuclei in the molecule (factorization of N = 15)



Magnetic resonance

February 22, 2018Erik Čižmár

17

 Interaction of vector with vector so that its magnitude is not
altered - interaction of magnetic moment with magn. field

 Length of vector is preserved, pure quantum state of qubit is
preserved also

 Let the field be static and uniform

in the z direction



Magnetic resonance
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 vector rewritten using polar coordinates on Bloch sphere

 Solve differential equation

 θ does not change
 the probability of finding the qubit in state

alebo does not change

Ddd
- Similar to harmonic oscillator



Magnetic resonance
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 Larmor frequency

Solution – vector rotates around the
magnetic field vector (precession) and his
projection in the field axis remains constant



Magnetic resonance
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 Larmor frequency

Probability of finding qubit in the state or is constant at the
precession

! But, probability of finding qubit in the state of superposition

is changing in time



Magnetic resonance
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 How to change the state from to ?
Let’s apply small alternating field in the plane perpendicular to static field
axis z :

Solution is proposed in the from

- We expect to find a precession around z, but the angle θ varies in time,
much slower than the angle φ



Magnetic resonance
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 We expect to find a precession around z, but the angle θ varies
in time, much slower than the angle φ, we can neglect some
terms

we need to solve only the last equation



Magnetic resonance
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 Let’s define perpendicular alternating field and

 Assuming precession around z, but the angle θ is time dependent

If at t = 0 qubit is in the stat e

 Find the solution in the resonance



Solution in the resonance ௅

angle θ grows linearly in time

laboratory frame rotating frame

State of qubit changes from | to and back periodically  Rabi oscillations

Magnetic resonance
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Magnetic resonance
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 Rabi oscillations

 On the return from to | qubit is in the plane xy exactly in the
opposite direction as was on the way from | to

 If we switch off ୄ at θ = π/2 and wait half-period of ωL, i.e. θ =
3π/2, and switch on ୄ back  qubit will return directly to |
without passing through

Magnetic resonance
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Quantum gates using pulses
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Detection of the state in MagRes
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The state of vector – qubit – detected also in the direction
perpendicular to z-axis, e.g. as induced voltage in the detection
coil, which could be the same one as used for excitation

NMR EPR

detection of electron paramagnetic

resonance (EPR) in resonator



Decoherence again
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How to determine characteristic parameters describing the loss of quantum
information using magnetic resonance ?

Measure T1, T2 a TR

T2

T1

TR
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Determination of quantum coherence time

Pulsed EPR – sequence of microwave pulses (or radio-frequency for NMR) –
dependence of spin echo intensity on the delay between pulses depends
exponentially on T2



Hahn echo
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Determination of quantum coherence time

Pulsed EPR – sequence of microwave pulses (or radio-frequency for NMR) –
dependence of spin echo intensity on the delay between pulses depends
exponentially on T2



Hahn echo
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Determination of quantum coherence time

Pulsed EPR – sequence of microwave pulses (or radio-frequency for NMR) –
dependence of spin echo intensity on the delay between pulses depends
exponentially on T2



Rabi oscillations
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 Period of oscillations defines
spin-flip time – NOT gate

 Ratio of T2/TR (qubit figure of
merit) represents the number of
operations we can perform
during T2



Single-ion magnets
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 Thin layer diluted Cu-phthalocyanine on Kapton foil

T2 = 1 μs @ 77 K, almost constant down to lowest temperatures

Nature 503 (2013) 504



Single-ion magnets

February 22, 2018Erik Čižmár

35

 (d20-Ph4P)2[V(C8S8)3] in solution of CS2

T2 = 0.7 ms @ 10 K

T2 = 1 μ s @ 300 K

ACS Cent. Sci. 1 (2015) 488

 Presence of nuclear spin accelerates decoherence – spin-flops of
nuclear spins create time-dependent fields at the electron site yielding

to decoherence



Single-ion magnets
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 Does the presence of nuclear spin indeed accelerate
decoherence?



Single-ion magnets
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 Does the presence of nuclear spin indeed accelerate
decoherence?

 T1 remains the same, but T2 not – nuclear spin diffusion barrier radius – nuclei
inside this barrier are too strong coupled to electrons to perform spin-flops and
do not contribute to decoherence (prediction from 1947)



Single-ion magnets
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 Does decoherence depend on spin value and spin-orbit coupling?



Single-ion magnets
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 Long coherence time with high-spin ion?

 High-spin Fe(III) complex in strong magnetic field – suppression of
the spin state mixing



Single-ion magnets
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 Use more spin transitions within one set of energy levels?



Single-ion magnets
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 Use more spin transitions within one set of energy levels?



Molecular spin clusters
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Cr7Ni ring (Affronte, Winpenny et al.)

T2 = 3 μs, deuterated sample

PRL 98 (2007) 057201



Molecular spin clusters
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Quantum entanglement in Cr7Ni – Ru2Co2+ - Cr7Ni
(Affronte, Winpenny et al.)

Nat. Nanotech. (2009) 173

 By injecting or removing electron from molecule
(e.g. from STM tip) we change the spin state of the
link – separation or back entanglement of two
qubits based on Cr7Ni rings

 Realization of gate



Molecular spin clusters
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 Spin trimer based on S=1/2 Cu2+ ions

Na12[X2W18Cu3O66(H2O)3].32H2O  (X - As, Sb) in nanoporous silica 

T2 = 3 μs

PRL 108 (2012) 067206



Quantum bits in spin chains
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 dimerized AFM spin chain - (TMTTF)2X , where X = AsF6 , PF6 , SbF6

 defect generates a local change of exchange interaction, localized magnetic
object with spin ½ created - soliton PRB 90 (2014) 060404(R)



Quantum bits in spin chains
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 Rabi oscillation

Solitons are trapped at defect site in chain
 Strong isotropic exchange interaction (about 400 K) between qubits generates 

narrow and homogenous EPR lines (exchange narrowing, well defined)
 Suppressed sources of decoherence related to inhomogeneity of local field (to 

avoid non identical qubits) or dipole-dipole interactions
 It is possible to work with high energy microwave pulses (usually coherence quickly 

decays in other magnets for high power pulses)
 Possibility of quantum entanglement through strong exchange interaction along 

the chain



Something new?
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 „Spin-labeled“ peptides on 30m diamond
with implanted NV-centres (defects)

 MW pulse manipulates spin in peptide

 NV center detects the quantum state of
the spin in peptide and this is detected
from fluorescence of NV-center using
confocal microscope

 It is possible to detect signal from one NV-
center



Entanglement in spin chains
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Sr14Cu24O41 Nat. Phys. 11 (2015) 255

7cladders ≈10cchains



Entanglement in spin chains
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 Incommensurability between ladder and chain layer creates S=1/2 states in
dimerized chain



Entanglement in spin chains
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 Long-distance entanglement between induced S=1/2 objects at low temp.
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The End


